BPDecoder
Bases: BaseDecoder
Belief propagation decoder for color codes.
This decoder uses the LDPC belief propagation algorithm to decode detector outcomes. It requires the optional 'ldpc' package and provides an alternative to the concatenated matching decoder, particularly useful for pre-decoding in hybrid strategies.
Key Features: - LDPC belief propagation with configurable iterations - Support for both 1D and 2D detector outcome arrays - Optional DEM observable removal for comparative decoding - Returns predictions, log-likelihood ratios, and convergence information - Graceful handling of missing ldpc dependency
Attributes:
Name | Type | Description |
---|---|---|
dem_manager |
DEMManager
|
Manager for detector error models and matrices |
comparative_decoding |
bool
|
Whether to remove observables from DEM before decoding |
_cached_inputs |
dict or None
|
Cached parity check matrix and probabilities for efficiency |
Source code in src/color_code_stim/decoders/bp_decoder.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
|
__init__(dem_manager, comparative_decoding=False, cache_inputs=True)
Initialize the belief propagation decoder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dem_manager
|
DEMManager
|
Manager providing access to detector error models |
required |
comparative_decoding
|
bool
|
Whether to remove observables from DEM before decoding |
False
|
cache_inputs
|
bool
|
Whether to cache the parity check matrix and probabilities |
True
|
Source code in src/color_code_stim/decoders/bp_decoder.py
clear_cache()
decode(detector_outcomes, max_iter=10, **kwargs)
Decode detector outcomes using belief propagation.
This method uses the LDPC belief propagation decoder to decode detector outcomes. It handles both single samples (1D) and multiple samples (2D).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detector_outcomes
|
ndarray
|
1D or 2D array of detector measurement outcomes to decode. For 1D: single sample with detector outcomes. For 2D: multiple samples, each row is a sample. |
required |
max_iter
|
int
|
Maximum number of belief propagation iterations to perform. |
10
|
**kwargs
|
Additional keyword arguments to pass to the BpDecoder constructor. |
{}
|
Returns:
Type | Description |
---|---|
tuple
|
(pred, llrs, converge) where: - pred: Predicted error pattern (same dimensionality as input) - llrs: Log probability ratios for each bit - converge: Convergence status (bool for 1D, array for 2D) |
Raises:
Type | Description |
---|---|
ImportError
|
If the 'ldpc' package is not installed. |
ValueError
|
If detector_outcomes has invalid dimensions (not 1D or 2D). |
Source code in src/color_code_stim/decoders/bp_decoder.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|
get_parity_check_info()
Get information about the parity check matrix.
Returns:
Type | Description |
---|---|
dict
|
Dictionary containing matrix dimensions, density, and statistics |