Low-overhead magic state distillation with color codes

Seok-Hyung Lee

The University of Sydney

Based on **arXiv:2409.07707** with F. Thomsen (Sydney), N. Fazio (Sydney), B. J. Brown (IBM), S. D. Bartlett (Sydney)

seokhyung-lee.github.io

IBM Quantum

Joint PsiQ-USYD Workshop | 25 Sep 2024

Motivation

- logical operations.
- We should **tailor & optimise** it to a specific code we want to use.
- Such optimisation has been studied well for surface codes by Litinski.
- How about for **color codes**?

• Magic state distillation (MSD) is **highly costly** due to its demand for many

A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery

Complex Quantum Systems, Freie Universität Berlin, Arnimallee 14,

Litinski, Quantum 3, 128 (2019)

Magic State Distillation: Not as Costly as You Think

Daniel Litinski @ Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

Litinski, Quantum 3, 205 (2019).

Color Codes Definition

- Color-code lattice [Bombin & Martin-Delgado, PRL 2006]
 - ▶ 3-valent
 - **3-colorable** faces & edges
- Qubit on each vertex
- *X*-type and *Z*-type checks on each face

Color Codes Logical Patches

(single logical qubit)

Rectangular patch

(two logical qubits)

Solid lines: Pauli-Z strings Dotted lines: Pauli-X strings

May have different code distances for logical X and Z errors.

Single-Level MSD Scheme 15-to-1 MSD circuit

The circuit can tolerate

- at most two rotation errors,
- any \overline{Z} errors on validation qubits,
- at most one \overline{X} error on a validation qubit

Single-Level MSD Scheme 15-to-1 MSD circuit

The circuit can tolerate

- at most two rotation errors,
- any \overline{Z} errors on validation qubits,
- at most one \overline{X} error on a validation qubit

Ref) Litinski, Quantum 3, 205 (2019)

$$= \overline{P}_{\theta} = \overline{P}_{\theta} = e^{-\frac{1}{2}}$$

$-i\theta \overline{P}$

Single-Level MSD Scheme 15-to-1 MSD circuit

The circuit can tolerate

- at most two rotation errors,
- any \overline{Z} errors on validation qubits,
- at most one \overline{X} error on a validation qubit

Does not damage the output qubit without being detected even though it causes more than two rotation errors

$$\prod_{P \in \mathscr{P}} P_{-\pi/4} \propto \prod_{P \in \mathscr{P}} (I + iP) = \sum_{\tilde{\mathscr{P}} \subseteq \mathscr{P}} \left[i^{|\tilde{\mathscr{P}}|} \prod_{P \in \tilde{\mathscr{P}}} P \right]$$

Single-Level MSD Scheme 15-to-1 MSD circuit Configuration of rotation gates

Interface regions for domain walls

Single-Level MSD Scheme Layout

d

 \boldsymbol{P}

Single-Level MSD Scheme Lattice Surgery

• Two commuting Pauli operators can be measured in parallel. Ref) Thomsen et al., arXiv:2201.07806

Single-Level MSD Scheme Syndrome Extraction Circuit

• Two-body check measurements can be done simultaneously with other check measurements.

Single-Level MSD Scheme **Configuration of Rotation Gates**

- Perform two rotations in each stage.
- We should consider two factors:
 - 1. The number of harmful errors (that cause logical errors on the output state without being detected) varies depending on the configuration.
 - 2. The layout is **not distance-preserving** for some configurations.

Single-Level MSD Scheme **Configuration of Rotation Gates**

- Perform two rotations in each stage.
- We should consider two factors:

(i) Activate the output qubit as late as possible. (ii) Make \overline{X}_{out} errors right after stages 5 and 6 unharmful. 1. The number of harmful errors (that cause logical errors on the output state without being detected) **varies** depending on the configuration.

2. The layout is **not distance-preserving** for some configurations.

Single-Level MSD Scheme **Configuration of Rotation Gates**

- Perform two rotations in each stage.
- We should consider two factors:
 - 1. The number of harmful errors (that cause logical errors on the output state without being detected) varies depending on the configuration.

2. The layout is **not distance-preserving** for some configurations.

Single-Level MSD Scheme Summary

- Basic ingredients: Lattice surgery & Faulty T-measurement
- By arranging the rotation gates properly, the number of harmful errors can be minimised & the layout can be distance-preserving.
- Output infidelity $\gtrsim 35p^3$ for circuit-level physical error rate p

Production of Higher-Quality Magic States Chamberland-Noh (CN) Protocol

- Distillation-free magic state preparation protocol
 - Fault-tolerantly prepare a H-type magic state $|\overline{H}\rangle := \cos\frac{\pi}{8}|\overline{0}\rangle + \sin\frac{\pi}{8}|\overline{1}\rangle = e^{i\pi/8}\overline{H}\overline{Z}_{\pi/4}|\overline{A}\rangle$ on a triangular color code with $d \leq 7$
 - Using the transversality of the logical H gate
 - Non-destructively measure \overline{H} through multiple controlled-*H* gates between data and ancilla qubits
 - Ensure fault-tolerance by flag qubits ►
 - Highly resource-efficient, but its output infidelity is limited (e.g., $\gtrsim 10^{-10}$ for $p = 10^{-4}$)

npj Quantum Information

Christopher Chamberland $\mathbb{D}^{1,2}$ and Kyungjoo Noh \mathbb{D}^{1}

/w.nature.com/nr

Check for update ARTICLE **OPEN** Very low overhead fault-tolerant magic state preparation using redundant ancilla encoding and flag qubits

Fault-tolerant quantum computing promises significant computational speedup over classical computing for a variety of important problems. One of the biggest challenges for realizing fault-tolerant quantum computing is preparing magic states with sufficiently low error rates. Magic state distillation is one of the most efficient schemes for preparing high-quality magic states. However, since magic state distillation circuits are not fault-tolerant, all the operations in the distillation circuits must be encoded in a large distance error-correcting code, resulting in a significant resource overhead. Here, we propose a fault-tolerant scheme for directly preparing high-quality magic states, which makes magic state distillation unnecessary. In particular, we introduce a concept that we call redundant ancilla encoding. The latter combined with flag qubits allows for circuits to both measure stabilizer generators of some code, while also being able to measure global operators to fault-tolerantly prepare magic states, all using nearest neighbor interactions. We apply such schemes to a planar architecture of the triangular color code family and demonstrate that our scheme requires at least an order of magnitude fewer gubits and space-time overhead compared to the most competitive magic state distillation schemes. Since our scheme requires only nearest-neighbor interactions in a planar architecture, it is suitable for various quantum computing platforms currently under development.

npj Quantum Information (2020)6:91; https://doi.org/10.1038/s41534-020-00319-5

- The CN protocol is executed repeatedly in each auxiliary patch.
- $|\overline{H}\rangle$ is first prepared in a patch with distance $d_{\rm CN} \leq 7$, then grown to distance $d_{\rm m}$.
- Use more than two auxiliary patches. : The CN protocol takes some time.

- Suppose the circuit-level noise model with strength p
- Use the Concatenated MWPM decoder Ref) Lee et al., Color code decoder with improved scaling for correcting circuit-level noise, arXiv:2404.07482 (2024).
 - Circuit-level threshold of 0.46%
 - Nearly reaches the best sub-threshold scaling: $p_{\text{fail}} \sim p^{d/2}$

Performance analysis Logical error rates (per round/area) vs circuit-level noise

- Possible error sources
 - Triangular and rectangular patches
 - Ancillary region (for lattice surgery)
 - Non-Clifford components (faulty T-measurement or the Chamerland-Noh protocol)
- Each type of error source can be mapped to a noise channel of the form $\Lambda_{\overline{U},p_{\text{err}}}: \overline{\rho} \mapsto (1-p_{\text{err}})\overline{\rho} + p_{\text{err}}\overline{U}\overline{\rho}\overline{U}$ acted on the ideal final state of the output and validation qubits
 - $\overline{\rho}$: logical state of the output and validation qubits
 - *p*_{err}: logical error rate
 (obtained from simulating triangular/rectand)
 - (obtained from simulating triangular/rectangular patches with the concatenated MWPM decoder) \overline{U} : product of $\pi/2$ - or ($\pm \pi/4$)-rotations in bases consisting of \overline{Z} operators only

- The single-level MSD scheme reaches $q_{\text{dist}} \gtrsim 35p^3$ as expected.
- Compared to a previous color code MSD scheme by Beverland et al. Ref) PRXQuantum.2.020341 (2021) : ~ 40 times improvement in spacetime cost (#qubits \times #timesteps) when $p = 10^{-4}$
- Still not better than the surface code scheme

• The combined MSD scheme reaches very low output infidelities, e.g., $\sim 3.4 \times 10^{-19}$ when $p = 10^{-4}$.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			D 11	<u> </u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Scheme	Output infidelity	Failure rate	Space cost n	Time cost t	Effective spacetime cos	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$q_{ m dist}$	$1-q_{ m succ}$	$\frac{(\text{Qubits})}{(10^{-4})}$	(Time steps)	$(nt/q_{ m succ})$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 50 10-6	$2.02 10^{-2}$	(a) $p = 10^{-1}$		1 51 105	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sng-(9, 4, 6, 3)	1.56×10^{-6}	3.83×10^{-2}	569	256	1.51×10^{3}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sng-(9, 6, 6, 5)	1.94×10^{-4}	2.84×10^{-3}	701	384	$2.70 imes 10^{3}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sng-(11, 8, 6, 5)	2.62×10^{-6}	2.91×10^{-3}	833	384	$3.21 imes 10^{3}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	${ m sng-}(13,6,8,5)$	1.83×10^{-9}	2.31×10^{-3}	1093	384	$4.21 imes 10^{\circ}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	${ m sng} ext{-}(17, 10, 12, 5)$	1.40×10^{-10}	2.37×10^{-3}	2193	384	$8.44 imes 10^{5}$	
$\begin{array}{c} {\rm cmb} - (17,16,12,5,5,3) & 1.46 \times 10^{-11} & 1.11 \times 10^{-3} & 3441 & 750 & 2.59 \times 10^6 \\ {\rm cmb} - (17,12,12,7,5,5) & 2.98 \times 10^{-13} & 1.47 \times 10^{-4} & 5717 & 684 & 3.92 \times 10^6 \\ {\rm cmb} - (21,14,14,7,7,6) & 1.05 \times 10^{-15} & 3.62 \times 10^{-5} & 7583 & 940 & 7.13 \times 10^6 \\ {\rm cmb} - (23,16,16,9,7,3) & 1.82 \times 10^{-17} & 4.55 \times 10^{-6} & 6979 & 1539 & 1.07 \times 10^7 \\ {\rm cmb} - (29,22,20,13,7,4) & 3.40 \times 10^{-19} & 3.20 \times 10^{-6} & 1.47 \times 10^4 & 1597 & 2.36 \times 10^7 \\ {\rm cmb} - (29,22,20,13,7,4) & 3.40 \times 10^{-19} & 3.20 \times 10^{-6} & 1.47 \times 10^4 & 1597 & 2.36 \times 10^7 \\ {\rm sng} - (11,8,6,5) & 1.33 \times 10^{-5} & 3.88 \times 10^{-2} & 833 & 384 & 3.33 \times 10^5 \\ {\rm sng} - (15,6,10,5) & 1.31 \times 10^{-6} & 2.96 \times 10^{-2} & 1477 & 384 & 5.84 \times 10^5 \\ {\rm sng} - (21,10,12,9) & 1.15 \times 10^{-7} & 1.01 \times 10^{-2} & 1785 & 512 & 9.23 \times 10^5 \\ {\rm sng} - (21,10,12,9) & 1.15 \times 10^{-8} & 7.93 \times 10^{-3} & 2645 & 640 & 1.71 \times 10^6 \\ {\rm sng} - (29,22,18,11,5,6) & 1.00 \times 10^{-10} & 2.08 \times 10^{-3} & 1.51 \times 10^4 & 1167 & 1.18 \times 10^7 \\ {\rm cmb} - (29,22,18,11,5,6) & 1.00 \times 10^{-10} & 2.08 \times 10^{-3} & 1.51 \times 10^4 & 1228 & 1.86 \times 10^7 \\ {\rm cmb} - (35,20,24,11,7,5) & 1.50 \times 10^{-12} & 3.72 \times 10^{-4} & 1.56 \times 10^4 & 9097 & 1.27 \times 10^8 \\ {\rm cmb} - (41,26,28,13,7,6) & 1.09 \times 10^{-13} & 2.17 \times 10^{-4} & 3.90 \times 10^4 & 9097 & 1.42 \times 10^8 \\ {\rm cmb} - (47,32,26,21,7,5) & 6.97 \times 10^{-14} & 1.89 \times 10^{-4} & 3.90 \times 10^4 & 9029 & 3.59 \times 10^8 \\ {\rm sng} - (17,8,12,7) & 1.72 \times 10^{-5} & 5.37 \times 10^{-2} & 2149 & 512 & 1.16 \times 10^6 \\ {\rm sng} - (47,24,26,23) & 3.58 \times 10^{-8} & 1.51 \times 10^{-2} & 1.31 \times 10^4 & 1536 & 2.04 \times 10^7 \\ {\rm cmb} - (47,26,30,17,7,5) & 1.15 \times 10^{-8} & 1.51 \times 10^{-2} & 3.99 \times 10^4 & 2.29 \times 10^5 & 9.18 \times 10^9 \\ {\rm cmb} - (47,26,30,17,7,5) & 1.04 \times 10^{-9} & 4.21 \times 10^{-3} & 3.99 \times 10^4 & 2.29 \times 10^5 & 9.18 \times 10^9 \\ {\rm cmb} - (47,26,30,17,7,5) & 1.04 \times 10^{-9} & 4.21 \times 10^{-3} & 3.99 \times 10^4 & 2.29 \times 10^5 & 9.18 \times 10^9 \\ {\rm cmb} - (47,26,30,17,7,5) & 1.04 \times 10^{-9} & 4.21 \times 10^{-3} & 3.99 \times 10^4 & 2.29 \times 10^5 & 9.18 \times 10^9 \\ {\rm cmb} - (47,26,30,17,7,5) & $	$\operatorname{sng-}(21,14,12,9)$	3.54×10^{-11}	1.50×10^{-3}	2917	640	$1.87 imes10^6$	
$\begin{array}{c} {\rm cmb} - (17, 12, 12, 7, 5, 5) & 2.98 \times 10^{-13} & 1.47 \times 10^{-4} & 5717 & 684 & 3.92 \times 10^6 \\ {\rm cmb} - (21, 14, 14, 7, 7, 6) & 1.05 \times 10^{-15} & 3.62 \times 10^{-5} & 7583 & 940 & 7.13 \times 10^6 \\ {\rm cmb} - (23, 16, 16, 9, 7, 3) & 1.82 \times 10^{-17} & 4.55 \times 10^{-6} & 6979 & 1539 & 1.07 \times 10^7 \\ {\rm cmb} - (29, 22, 20, 13, 7, 4) & 3.40 \times 10^{-19} & 3.20 \times 10^{-6} & 1.47 \times 10^4 & 1597 & 2.36 \times 10^7 \\ \hline \\ {\rm sng} - (11, 8, 6, 5) & 1.31 \times 10^{-6} & 2.96 \times 10^{-2} & 1477 & 384 & 5.84 \times 10^5 \\ {\rm sng} - (17, 8, 10, 7) & 1.05 \times 10^{-7} & 1.01 \times 10^{-2} & 1785 & 512 & 9.23 \times 10^5 \\ {\rm sng} - (21, 10, 12, 9) & 1.15 \times 10^{-8} & 7.93 \times 10^{-3} & 2645 & 640 & 1.71 \times 10^6 \\ {\rm sng} - (29, 18, 18, 15) & 4.43 \times 10^{-9} & 7.52 \times 10^{-3} & 6653 & 1024 & 6.25 \times 10^6 \\ {\rm cmb} - (23, 16, 14, 9, 5, 6) & 1.00 \times 10^{-10} & 2.08 \times 10^{-3} & 1.51 \times 10^4 & 1167 & 1.18 \times 10^7 \\ {\rm cmb} - (31, 18, 20, 11, 7, 5) & 1.19 \times 10^{-11} & 3.69 \times 10^{-4} & 1.39 \times 10^4 & 9097 & 1.27 \times 10^8 \\ {\rm cmb} - (35, 20, 24, 11, 7, 5) & 1.50 \times 10^{-12} & 3.72 \times 10^{-4} & 1.56 \times 10^4 & 9097 & 1.27 \times 10^8 \\ {\rm cmb} - (47, 32, 26, 21, 7, 5) & 6.97 \times 10^{-13} & 2.17 \times 10^{-4} & 3.90 \times 10^4 & 9209 & 3.59 \times 10^8 \\ {\rm cmb} - (47, 32, 26, 21, 7, 5) & 1.13 \times 10^{-6} & 2.52 \times 10^{-2} & 3701 & 640 & 2.43 \times 10^6 \\ {\rm sng} - (29, 20, 18, 11) & 1.27 \times 10^{-7} & 1.82 \times 10^{-2} & 5909 & 768 & 4.62 \times 10^6 \\ {\rm sng} - (47, 24, 26, 23) & 3.58 \times 10^{-8} & 1.51 \times 10^{-2} & 1.31 \times 10^4 & 1236 & 2.04 \times 10^6 \\ {\rm sng} - (47, 24, 26, 23) & 3.58 \times 10^{-8} & 1.51 \times 10^{-2} & 1.31 \times 10^4 & 2.28 \times 10^5 & 7.03 \times 10^9 \\ {\rm sng} - (47, 24, 26, 23) & 3.58 \times 10^{-8} & 1.51 \times 10^{-2} & 3.99 \times 10^4 & 2.29 \times 10^5 & 9.18 \times 10^9 \\ {\rm cmb} - (47, 26, 30, 17, 7, 5) & 1.15 \times 10^{-9} & 4.21 \times 10^{-3} & 3.99 \times 10^4 & 2.29 \times 10^5 & 9.18 \times 10^9 \\ {\rm cmb} - (47, 28, 34, 33, 7, 5) & 1.04 \times 10^{-9} & 4.21 \times 10^{-3} & 3.99 \times 10^4 & 2.29 \times 10^5 & 9.18 \times 10^9 \\ {\rm cmb} - (57, 38, 34, 19, 7, 5) & 1.04 \times 10^{-9} & 4.21 \times 10^{-3} & 3.99 \times 10^4 & 2.29 \times 10^5 & 9.18 \times 10^9 \\ {\rm cmb} - (57, 38, 34, 33, 7, 5) & 1.04 $	${ m cmb} ext{-}(17, 16, 12, 5, 5, 3)$	1.46×10^{-11}	1.11×10^{-3}	3441	750	$2.59 imes10^6$	
$\begin{array}{c} {\rm cmb}(21,14,14,7,7,6) & 1.05\times 10^{-15} & 3.62\times 10^{-5} & 7583 & 940 & 7.13\times 10^6 \\ {\rm cmb}(23,16,16,9,7,3) & 1.82\times 10^{-17} & 4.55\times 10^{-6} & 6979 & 1539 & 1.07\times 10^7 \\ {\rm cmb}(29,22,20,13,7,4) & 3.40\times 10^{-19} & 3.20\times 10^{-6} & 1.47\times 10^4 & 1597 & 2.36\times 10^7 \\ \hline & & & & & & & & & & & & & & & & & &$	${ m cmb} ext{-}(17, 12, 12, 7, 5, 5)$	$2.98 imes 10^{-13}$	1.47×10^{-4}	5717	684	$3.92 imes10^6$	
$\begin{array}{c} {\rm cmb}(23,16,16,9,7,3) \\ {\rm cmb}(29,22,20,13,7,4) \\ (29,22,20,13,7,4) \\ (20,22,20,13,11) \\ (20,22,20,13,12) \\ (20,22,20,13,12) \\ (20,22,20,13,12) \\ (20,22,20,13,12) \\ (20,22,20,13,12) \\ (20,22,$	${ m cmb} ext{-}(21, 14, 14, 7, 7, 6)$	$1.05 imes 10^{-15}$	$3.62 imes 10^{-5}$	7583	940	$7.13 imes10^6$	
$\begin{array}{c} {\rm cmb}(29,22,20,13,7,4) & 3.40\times 10^{-19} & 3.20\times 10^{-6} & 1.47\times 10^4 & 1597 & 2.36\times 10^7 \\ & {\rm (b)} \ p=5\times 10^{-4} & {\rm (b)} \ p=5\times 10^{-4} & {\rm (b)} \ p=5\times 10^{-1} & {\rm (b)} \ p=10^{-1} & {\rm (c)} \ p=10^{-3} & {\rm (c)$	${ m cmb} ext{-}(23, 16, 16, 9, 7, 3)$	1.82×10^{-17}	$4.55 imes 10^{-6}$	6979	1539	1.07×10^7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{cmb-}(29, 22, 20, 13, 7, 4)$	3.40×10^{-19}	$3.20 imes 10^{-6}$	$1.47 imes 10^4$	1597	$2.36 imes10^7$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(1	p) $p = 5 \times 10^{-1}$	-4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m sng-(11, 8, 6, 5)	$1.33 imes10^{-5}$	3.88×10^{-2}	833	384	$3.33 imes10^5$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	sng-(15, 6, 10, 5)	1.31×10^{-6}	2.96×10^{-2}	1477	384	$5.84 imes10^5$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	sng-(17, 8, 10, 7)	$1.05 imes 10^{-7}$	1.01×10^{-2}	1785	512	$9.23 imes10^5$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sng-(21, 10, 12, 9)	1.15×10^{-8}	$7.93 imes 10^{-3}$	2645	640	$1.71 imes10^6$	
$\begin{array}{c} {\rm cmb} - (23,16,14,9,5,6) & 1.02 \times 10^{-9} & 2.47 \times 10^{-3} & 1.01 \times 10^4 & 1167 & 1.18 \times 10^7 \\ {\rm cmb} - (29,22,18,11,5,6) & 1.00 \times 10^{-10} & 2.08 \times 10^{-3} & 1.51 \times 10^4 & 1228 & 1.86 \times 10^7 \\ {\rm cmb} - (31,18,20,11,7,5) & 1.19 \times 10^{-11} & 3.69 \times 10^{-4} & 1.39 \times 10^4 & 9097 & 1.27 \times 10^8 \\ {\rm cmb} - (35,20,24,11,7,5) & 1.50 \times 10^{-12} & 3.72 \times 10^{-4} & 1.56 \times 10^4 & 9097 & 1.42 \times 10^8 \\ {\rm cmb} - (41,26,28,13,7,6) & 1.09 \times 10^{-13} & 2.17 \times 10^{-4} & 2.40 \times 10^4 & 8932 & 2.14 \times 10^8 \\ {\rm cmb} - (47,32,26,21,7,5) & 6.97 \times 10^{-14} & 1.89 \times 10^{-4} & 3.90 \times 10^4 & 9209 & 3.59 \times 10^8 \end{array}$	sng-(29, 18, 18, 15)	$4.43 imes 10^{-9}$	$7.52 imes 10^{-3}$	6053	1024	$6.25 imes10^6$	
$\begin{array}{c} {\rm cmb} (29,22,18,11,5,6) & 1.00 \times 10^{-10} & 2.08 \times 10^{-3} & 1.51 \times 10^4 & 1228 & 1.86 \times 10^7 \\ {\rm cmb} (31,18,20,11,7,5) & 1.19 \times 10^{-11} & 3.69 \times 10^{-4} & 1.39 \times 10^4 & 9097 & 1.27 \times 10^8 \\ {\rm cmb} (35,20,24,11,7,5) & 1.50 \times 10^{-12} & 3.72 \times 10^{-4} & 1.56 \times 10^4 & 9097 & 1.42 \times 10^8 \\ {\rm cmb} (41,26,28,13,7,6) & 1.09 \times 10^{-13} & 2.17 \times 10^{-4} & 2.40 \times 10^4 & 8932 & 2.14 \times 10^8 \\ {\rm cmb} (47,32,26,21,7,5) & 6.97 \times 10^{-14} & 1.89 \times 10^{-4} & 3.90 \times 10^4 & 9209 & 3.59 \times 10^8 \end{array}$	cmb-(23, 16, 14, 9, 5, 6)	$1.02 imes 10^{-9}$	$2.47 imes 10^{-3}$	$1.01 imes 10^4$	1167	$1.18 imes10^7$	
$\begin{array}{c} {\rm cmb} - (31,18,20,11,7,5) \\ {\rm cmb} - (35,20,24,11,7,5) \\ {\rm cmb} - (35,20,24,11,7,5) \\ {\rm cmb} - (41,26,28,13,7,6) \\ {\rm cmb} - (47,32,26,21,7,5) \end{array} \begin{array}{c} 1.19 \times 10^{-11} \\ 1.50 \times 10^{-12} \\ {\rm cmb} - (47,32,26,21,7,5) \end{array} \begin{array}{c} 1.09 \times 10^{-13} \\ 1.09 \times 10^{-13} \\ {\rm cmb} - (47,32,26,21,7,5) \end{array} \begin{array}{c} 1.09 \times 10^{-13} \\ {\rm cmb} - (47,32,26,21,7,5) \end{array} \begin{array}{c} 1.09 \times 10^{-13} \\ {\rm cmb} - (47,32,26,21,7,5) \end{array} \begin{array}{c} 1.72 \times 10^{-5} \\ {\rm cmb} - (47,32,26,21,7,5) \end{array} \begin{array}{c} 1.72 \times 10^{-5} \\ {\rm cmb} - (47,32,26,21,7,5) \end{array} \begin{array}{c} 1.72 \times 10^{-5} \\ {\rm cmb} - (47,32,26,21,7,5) \end{array} \begin{array}{c} 1.72 \times 10^{-5} \\ {\rm cmb} - (47,24,26,23) \\ {\rm sng} - (23,16,14,9) \\ {\rm sng} - (29,20,18,11) \\ {\rm sng} - (47,24,26,23) \\ {\rm cmb} - (47,26,30,17,7,5) \end{array} \begin{array}{c} 1.15 \times 10^{-8} \\ {\rm cmb} - (47,26,30,17,7,5) \\ {\rm cmb} - (47,26,30,17,7,5) \\ {\rm cmb} - (53,38,34,19,7,5) \\ {\rm cmb} - (57,38,34,33,7,5) \end{array} \begin{array}{c} 1.82 \times 10^{-9} \\ {\rm cmb} - (67,38,34,33,7,5) \end{array} \begin{array}{c} 1.82 \times 10^{-10} \\ {\rm cmb} - (67,38,34,33,7,5) \\ {\rm cmb} - (67,38,34,33,7,5) \end{array} \begin{array}{c} 1.19 \times 10^{-11} \\ {\rm cmb} - (10 \times 10^{-10} \\ {\rm cmb} - (10^{-10} \times 10^{-10} \\ {\rm cmb} - (10$	cmb-(29, 22, 18, 11, 5, 6)	$1.00 imes 10^{-10}$	$2.08 imes 10^{-3}$	$1.51 imes 10^4$	1228	$1.86 imes 10^7$	
$\begin{array}{cccc} {\rm cmb} - (35,20,24,11,7,5) & 1.50 \times 10^{-12} & 3.72 \times 10^{-4} & 1.56 \times 10^4 & 9097 & 1.42 \times 10^8 \\ {\rm cmb} - (41,26,28,13,7,6) & 1.09 \times 10^{-13} & 2.17 \times 10^{-4} & 2.40 \times 10^4 & 8932 & 2.14 \times 10^8 \\ {\rm cmb} - (47,32,26,21,7,5) & 6.97 \times 10^{-14} & 1.89 \times 10^{-4} & 3.90 \times 10^4 & 9209 & 3.59 \times 10^8 \end{array}$	cmb-(31, 18, 20, 11, 7, 5)	1.19×10^{-11}	$3.69 imes 10^{-4}$	$1.39 imes10^4$	9097	$1.27 imes 10^8$	
$\begin{array}{cccc} {\rm cmb} - (41,26,28,13,7,6) & 1.09 \times 10^{-13} & 2.17 \times 10^{-4} & 2.40 \times 10^4 & 8932 & 2.14 \times 10^8 \\ {\rm cmb} - (47,32,26,21,7,5) & 6.97 \times 10^{-14} & 1.89 \times 10^{-4} & 3.90 \times 10^4 & 9209 & 3.59 \times 10^8 \\ \hline \\ {\rm sng} - (17,8,12,7) & 1.72 \times 10^{-5} & 5.37 \times 10^{-2} & 2149 & 512 & 1.16 \times 10^6 \\ {\rm sng} - (23,16,14,9) & 1.13 \times 10^{-6} & 2.52 \times 10^{-2} & 3701 & 640 & 2.43 \times 10^6 \\ {\rm sng} - (29,20,18,11) & 1.27 \times 10^{-7} & 1.82 \times 10^{-2} & 5909 & 768 & 4.62 \times 10^6 \\ {\rm sng} - (47,24,26,23) & 3.58 \times 10^{-8} & 1.51 \times 10^{-2} & 1.31 \times 10^4 & 1536 & 2.04 \times 10^7 \\ {\rm cmb} - (47,26,30,17,7,5) & 1.15 \times 10^{-8} & 6.99 \times 10^{-3} & 3.06 \times 10^4 & 2.28 \times 10^5 & 7.03 \times 10^9 \\ {\rm cmb} - (53,38,34,19,7,5) & 1.04 \times 10^{-9} & 4.21 \times 10^{-3} & 3.99 \times 10^4 & 2.29 \times 10^5 & 9.18 \times 10^9 \\ {\rm cmb} - (67,38,34,33,7,5) & 1.82 \times 10^{-10} & 2.59 \times 10^{-3} & 7.06 \times 10^4 & 2.26 \times 10^5 & 1.60 \times 10^{10} \end{array}$	cmb-(35, 20, 24, 11, 7, 5)	$1.50 imes 10^{-12}$	$3.72 imes 10^{-4}$	$1.56 imes10^4$	9097	$1.42 imes 10^8$	
$\begin{array}{c cmb-(47,32,26,21,7,5) \end{array} \begin{array}{c} 6.97 \times 10^{-14} \\ \hline & 1.89 \times 10^{-4} \\ \hline & 3.90 \times 10^{4} \\ \hline & 9209 \\ \hline & 3.59 \times 10^{8} \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	cmb-(41, 26, 28, 13, 7, 6)	1.09×10^{-13}	$2.17 imes 10^{-4}$	$2.40 imes10^4$	8932	$2.14 imes 10^8$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cmb-(47, 32, 26, 21, 7, 5)	$6.97 imes10^{-14}$	$1.89 imes 10^{-4}$	$3.90 imes10^4$	9209	$3.59 imes10^8$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(c) $p = 10^{-3}$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sng-(17, 8, 12, 7)	$1.72 imes 10^{-5}$	$5.37 imes 10^{-2}$	2149	512	$1.16 imes 10^6$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sng-(23, 16, 14, 9)	$1.13 imes 10^{-6}$	2.52×10^{-2}	3701	640	$2.43 imes10^6$	
$\begin{array}{cccc} \mathrm{sng}\text{-}(47,24,26,23) & 3.58\times10^{-8} & 1.51\times10^{-2} & 1.31\times10^4 & 1536 & 2.04\times10^7 \\ \mathrm{cmb}\text{-}(47,26,30,17,7,5) & 1.15\times10^{-8} & 6.99\times10^{-3} & 3.06\times10^4 & 2.28\times10^5 & 7.03\times10^9 \\ \mathrm{cmb}\text{-}(53,38,34,19,7,5) & 1.04\times10^{-9} & 4.21\times10^{-3} & 3.99\times10^4 & 2.29\times10^5 & 9.18\times10^9 \\ \mathrm{cmb}\text{-}(67,38,34,33,7,5) & 1.82\times10^{-10} & 2.59\times10^{-3} & 7.06\times10^4 & 2.26\times10^5 & 1.60\times10^{10} \end{array}$	sng-(29, 20, 18, 11)	1.27×10^{-7}	1.82×10^{-2}	5909	768	4.62×10^6	
$\begin{array}{c} {\rm cmb-}(47,26,30,17,7,5) & 1.15\times10^{-8} & 6.99\times10^{-3} & 3.06\times10^4 & 2.28\times10^5 & 7.03\times10^9 \\ {\rm cmb-}(53,38,34,19,7,5) & 1.04\times10^{-9} & 4.21\times10^{-3} & 3.99\times10^4 & 2.29\times10^5 & 9.18\times10^9 \\ {\rm cmb-}(67,38,34,33,7,5) & 1.82\times10^{-10} & 2.59\times10^{-3} & 7.06\times10^4 & 2.26\times10^5 & 1.60\times10^{10} \end{array}$	sng-(47, 24, 26, 23)	3.58×10^{-8}	1.51×10^{-2}	1.31×10^{4}	1536	$2.04 imes 10^7$	
$\begin{array}{c} \text{cmb-}(53,38,34,19,7,5) \\ \text{cmb-}(67,38,34,33,7,5) \end{array} \begin{array}{c} 1.04 \times 10^{-9} \\ 1.82 \times 10^{-10} \end{array} \begin{array}{c} 4.21 \times 10^{-3} \\ 2.59 \times 10^{-3} \\ 2.59 \times 10^{-3} \end{array} \begin{array}{c} 3.99 \times 10^{4} \\ 7.06 \times 10^{4} \\ 2.26 \times 10^{5} \end{array} \begin{array}{c} 9.18 \times 10^{9} \\ 1.60 \times 10^{10} \end{array}$	cmb-(47, 26, 30, 17, 7, 5)	1.15×10^{-8}	6.99×10^{-3}	3.06×10^{4}	2.28×10^{5}	7.03×10^{9}	
cmb-(67, 38, 34, 33, 7, 5) 1.82×10^{-10} 2.59×10^{-3} 7.06×10^{4} 2.26×10^{5} 1.60×10^{10}	cmb-(53, 38, 34, 19, 7, 5)	1.04×10^{-9}	4.21×10^{-3}	3.99×10^4	2.29×10^5	9.18×10^{9}	
	cmb-(67, 38, 34, 33, 7, 5)	1.82×10^{-10}	2.59×10^{-3}	7.06×10^4	2.26×10^5	1.60×10^{10}	

Take-Home Messages

- structures.
- For color codes, we can exploit their advantages:
 - Simultaneous measurement of commuting Pauli operators via lattice surgery
 - Various types of logical patches (triangular / rectangular)
 - Transversal Clifford gate (which enables the Chamberland-Noh protocol)
- be considered:
 - Patches, ancillary regions, domain walls, non-Clifford components, and so on.
 - Theoretical estimations (e.g., $p_{\rm L} \approx 35p^3$) are valid only when other logical errors are negligible. They are indeed **NOT** in most cases.
- Our schemes improve resource cost by up to two orders of magnitude, approaching the performance levels of surface codes.

• We need end-to-end MSD schemes optimised for individual QEC codes, not just their high-level

• For realistic error analysis, every possible type of logical error that can happen during MSD should

arXiv:2409.07707