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SUMMARY 
‣ Measurement-based quantum computing (MBQC) in linear optical systems 
→ Promising for near-future quantum computing architecture 

‣ Nondeterministic nature of entangling operations & Photon losses 
→ Hinder the generation of resource states and introduce errors during MBQC 

‣ We propose a linear-optical MBQC protocol using the parity state encoding to 
overcome these problems. 

‣ It is shown to be highly photon-loss tolerant and resource-efficient. 
‣ For realistic error analysis, we introduce a Bayesian methodology to track errors 

caused by nonideal entangling operations. 
‣ We show that our protocol is advantageous over several other existing protocols. 

BACKGROUND 
‣ Graph state  for a graph  

- For each vertex , 

  

‣ Measurement-based quantum computing (MBQC) [1, 2] 
- Quantum computing done by single-qubit measurements on a graph state. 
- Raussendorf-Harrington-Goyal (RHG) lattice → Universal fault-tolerant MBQC 

‣ Type-II fusion [3]: Hadamard gate + Bell-state measurement (BSM) 
- Combine two graph states 

 

BAYESIAN ERROR TRACKING FOR NONIDEAL FUSIONS 
‣ Ideal fusions are impossible due to theoretical limitations & environmental noises. 
‣ If single-photon polarization qubits are used, 

- A Bell-state measurement (BSM) can discriminate only . 
 

( : “letter”,  : “sign”) 
- When a BSM fails, : determined & : ambiguous 
→ Randomly assign  

- Equivalent to qubit 1 having a -error with a 50% chance. 
‣ In general, 

- A non-ideal BSM gives one of the multiple outcomes. 
- Calculate the posterior probability of each Bell state for the outcome with the 

Bayesian theorem → Select the most probable Bell state as the result. 
- Obtain the sign (letter) error probability  ( ). 
→ Propagate appropriately into nearby qubits. 

‣ Enable accurate and effective error simulations 
- Qubits affected by unsuccessful fusions are locatable. 
- Error probabilities of individual qubits are used for adaptive decoding. 

BUILDING AN RHG LATTICE 

 

PARITY-STATE-ENCODING-BASED TOPOLOGICAL 
QUANTUM COMPUTING PROTOCOL 
‣  parity state encoding: ,  

where  
‣ Concatenated BSM scheme [5] is modified and used. 
‣ Microclusters are generated by entangling multiple 3-photon GHZ states. 
→ Possible with linear-optical circuits, single-photon sources, and photodetectors. 

‣ i.i.d. photon loss model with loss rate  

 

COMPARISON WITH OTHER APPROACHES 
1. Using single-photon qubits with fusions assisted by ancillary photons [6—8] 

- Photon-number resolving detectors (PNRDs) that can resolve many photons (16 
photons when ) are required. 

- Ancillary states that are hard to generate with linear optics are required. 
2. Using simple repetition codes [9] 

- Photon loss threshold  → Much smaller than that of our protocol. 
3. Using redundant tree structures on graph states [10] 

- At least  photodetectors are required per data qubit, 
while our protocol requires  photodetectors. 
→ About twofold improvement 

CONCLUSION 
‣ We addressed the problem of overcoming the negative effects of nonideal 

fusions and photon losses during linear-optical MBQC. 
‣ We introduced a Bayesian methodology for tracking errors caused by nonindeal 

fusions, which enables accurate and effective error simulations. 
‣ We proposed the PTQC protocol using the parity-state-encoded multiphoton 

qubits. 
‣ PTQC has a high loss threshold of at most  and requires  or less 

GHZ-3 states. 
‣ We verified that PTQC is advantageous over three other approaches [6—10] in 

terms of fault-tolerance, resource overhead, or feasibility of basic elements. 
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