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Measurement-based quantum computing (MBQC) in linear optical systems

— Promising for near-future quantum computing architecture

Nondeterministic nature of entangling operations & Photon losses

— Hinder the generation of resource states and introduce errors during MBQC
We propose a linear-optical MBQC protocol using the parity state encoding to
overcome these problems.

It is shown to be highly photon-loss tolerant and resource-efficient.

For realistic error analysis, we introduce a Bayesian methodology to track errors

caused by nonideal entangling operations.
We show that our protocol is advantageous over several other existing protocols.
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Measurement-based quantum computing (MBQC) [1, 2]
Quantum computing done by single-qubit measurements on a graph state.
Raussendorf-Harrington-Goyal (RHG) lattice = Universal fault-tolerant MBQC
Type-ll fusion [3]: Hadamard gate + Bell-state measurement (BSM)
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Ideal fusions are impossible due to theoretical limitations & environmental noises.
If single-photon polarization qubits are used,

A Bell-state measurement (BSM) can discriminate only |y™).
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Equivalent to qubit 1 having a Z-error with a 50% chance.
In general,
A non-ideal BSM gives one of the multiple outcomes.
Calculate the posterior probability of each Bell state for the outcome with the
Bayesian theorem — Select the most probable Bell state as the result.

Obtain the sign (letter) error probability gg;e, (eq)-
— Propagate appropriately into nearby qubits.
Enable accurate and effective error simulations
Qubits affected by unsuccessful fusions are locatable.
Error probabilities of individual qubits are used for adaptive decoding.
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(n, m) parity state encoding: |0,) := | +)®" |1,) := | =™ \®"
where | ) := (|H) + [ V))®"  (|H) — |[V)®"
Concatenated BSM scheme [5] is modified and used.

Microclusters are generated by entangling multiple 3-photon GHZ states.
— Possible with linear-optical circuits, single-photon sources, and photodetectors.
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Using single-photon qubits with fusions assisted by ancillary photons [6—8]
Photon-number resolving detectors (PNRDs) that can resolve many photons (16

photons when#n =1 %) are required.

Ancillary states that are hard to generate with linear optics are required.
Using simple repetition codes [7]

Photon loss threshold $ 1% — Much smaller than that of our protocol.
Using redundant tree structures on graph states [10]

At least ~ 2 X 10° photodetectors are required per data qubit,

while our protocol requires ~ 7 X 10* photodetectors.
— About twofold improvement

We addressed the problem of overcoming the negative effects of nonideal
fusions and photon losses during linear-optical MBQC.

We introduced a Bayesian methodology for tracking errors caused by nonindeal
fusions, which enables accurate and effective error simulations.

We proposed the PTQC protocol using the parity-state-encoded multiphoton
qubits.

PTQC has a high loss threshold of at most ~ 8.5% and requires 10° or less
GHZ-3 states.

We verified that PTQC is advantageous over three other approaches [6—10] in
terms of fault-tolerance, resource overhead, or feasibility of basic elements.
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