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SUMMARY 
‣ Graph states: Resources for various quantum information task including 

measurement-based quantum computing, fusion-based quantum computing, 
quantum repeaters, and quantum metrology 

‣ In linear optical systems, graph states can be generated by type-II fusion 
operations → Non-deterministic, thus large graph states are difficult to generate. 

‣ We propose a graph-theoretical strategy to effectively optimize the generation 
of any graph state via type-II fusions. 

‣ Main idea: find a graph state equivalent to the desired graph state under local 
Clifford gates and type-II fusions but easier to generate →  Unraveling 

‣ We expect that our strategy and software will assist researchers in developing and 
accessing experimentally viable schemes that use photonic graph states. 

BACKGROUND 
‣ Graph state: For a graph , 

 

  

→ Used in measurement-based quantum computing [1,2], fusion-based quantum 
computing [3], quantum repeaters [4], quantum metrology [5], etc. 

‣ Equivalence of graph states under local Clifford gates: 

 → Local complementation (LC) 

‣ Type-II fusion [6]: Measuring  
→ Connect/disconnect every pair of adjacent vertices of two vertices 

OVERVIEW OF THE STRATEGY 
‣ Basic resource state: three-qubit linear graph state  

(Can be generated with a success rate of  linear-optically [7]) 

‣ Resource cost : Average number of ’s required to successfully generate 
one  state through post-selection 

1. Simplify the graph of the desired graph state via unraveling. 
2. Construct a fusion network. 
3. Determine the fusion order and calculate the resource cost . 
4. Iterate 1—3 a sufficient number of times and select the best one. 

STAGE 1: UNRAVELING 

 

‣ Finding all non-overlapping bipartitely-complete subgraphs →  

‣ Finding all non-overlapping cliques [8] →  

STAGE 2: CONSTRUCTION OF FUSION NETWORK 

 

STAGE 3: DETERMINATION OF FUSION ORDER 

 

EXAMPLE 

 

NUMERICAL RESULTS 
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node = connected component of qubits
(weight = avg no. of |"∗" ⟩’s for its generation)
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B. Maximum matching

link = required fusion between nodes
(weight = expected weight of the fused node)
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