GRAPH-THEORETICAL OPTIMIZATION OF FUSION-BASED GRAPH STATE GENERATION

Seok-Hyung Lee1,2 and Hyunseok Jeong1

1Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea 2Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, Australia

SUMMARY

- ‣ **Graph states**: Resources for various quantum information task including measurement-based quantum computing, fusion-based quantum computing, quantum repeaters, and quantum metrology
- ‣ In linear optical systems, graph states can be generated by **type-II fusion operations** → **Non-deterministic**, thus large graph states are difficult to generate.
- ‣ We propose **a graph-theoretical strategy to effectively optimize the generation of any graph state via type-II fusions.**
- ‣ Main idea: find a **graph state equivalent to the desired graph state** under local Clifford gates and type-II fusions but easier to generate → **Unraveling**

 \rightarrow Used in measurement-based quantum computing [1,2], fusion-based quantum computing [3], quantum repeaters [4], quantum metrology [5], etc.

‣ We expect that our strategy and software will assist researchers in developing and accessing experimentally viable schemes that use photonic graph states.

BACKGROUND

 \blacktriangleright **Graph state:** For a graph $G = (V, E)$, $|G\rangle_V := \prod U_{CZ} (v_1, v_2) \bigotimes |+\rangle_V$ *v*₁,*v*₂∈*E v*∈*V* $\forall v \in V$, $S_v | G \rangle := | X_v |$ *u*∈adj(*v*) $Z_u \mid |G\rangle = |G\rangle$

‣ Equivalence of graph states under local Clifford gates:

 $\exp\left[-i\frac{1}{4}X_{\nu}\right] - \prod_{i=1}^{\infty}\exp\left[i\frac{1}{4}Z_{\nu}\right] \mid G\rangle = |{\rm LC}_{\nu}(G)\rangle \to {\sf Local\ complementation}$ (LC) *π* 4 $X_{\scriptscriptstyle\mathcal{V}}^{}$ $\|$ $\|$ *u*∈adj(*v*) $\exp |i \rangle$ *π* 4 $Z_u | G \rangle = | LC_v(G) \rangle$

→ Connect/disconnect every pair of adjacent vertices of two vertices

OVERVIEW OF THE STRATEGY

- ‣ Basic resource state: **three-qubit linear graph state** |*G*(3) * ⟩ := |+0+⟩ + |−1−⟩ (Can be generated with a success rate of $1/32$ linear-optically [7])
- \blacktriangleright **Resource cost** Q : Average number of $|G^{(3)}_{*}\rangle$'s required to successfully generate
- one $|G\rangle$ state through post-selection
- 1. Simplify the graph of the desired graph state via **unraveling**.
- 2. Construct a **fusion network**.
- 3. Determine the **fusion order** and calculate the **resource cost** Q .
- 4. Iterate 1—3 a sufficient number of times and select the best one.

STAGE 2: CONSTRUCTION OF FUSION NETWORK

‣ **Type-II fusion** [6]: Measuring {*X* ⊗ *Z*, *Z* ⊗ *X*}

STAGE 3: DETER

EXAMPLE

NUMERICAL RESULTS

REFERENCES

[1] R. Raussendorf et al., Ann. Phys. **321**, 2242 (2006). [2] R. Raussendorf et al., New J. Phys. **9**, 199 (2007). [3] S. Bartolucci et al., Nat. Commun. 14, 912 (2023). [4] M. Zwerger et al., Phys. Rev. A 85, 062326 (2012). [5] N. Shettel and D. Markham, Phys. Rev. Lett. 124, 110502 (2020). [6] D. E. Browne and T. Rudolph, Phys. Rev. Lett. 95, 010501 (2005). [7] M. Vernava, Phys. Rev. Lett. 100, 060502 (2008). [8] E. L. Lawler, SIAM J. Comput. 9, 558-565 (1980).

 \blacktriangleright Finding all non-overlapping bipartitely-complete subgraphs $\rightarrow O\left(\mid V \!\mid\! d_{\max}^4\right)$ \triangleright Finding all non-overlapping cliques [8] $\rightarrow O(\text{poly}(N_{\text{clique}}))$

=

 $(1 - \eta)$

2

2

