Fault-tolerant Concatenated Bell-state Measurement with Coherent-state Qubits

Seokhyung Lee and Hyunseok Jeong

SNU Quantum Information Science Group

June 1, 2020

Seokhyung Lee and Hyunseok Jeong (SQuiS) Concatenated BSM with Coherent States

・ロト ・回 ト ・ ヨト ・

Table of Contents

Backgrounds

- Concatenated Bell-state measurement
- Quantum repeater
- Coherent-state qubits

Theoretical results

- Bell-state measurement of coherent-state qubits in lossy environment
- Parity encoding using coherent-state qubits
- Naïve Bell-state measurement scheme
- Bell-state measurement scheme with optimized cost
- Probabilities of specific measurement results

3 Numerical calculation

- Methods for Monte-Carlo simulation
- Simulation results
- Implementation of the scheme
 - Conclusion

Table of Contents

Backgrounds

- Concatenated Bell-state measurement
- Quantum repeater
- Coherent-state qubits

Theoretical results

- Bell-state measurement of coherent-state qubits in lossy environment
- Parity encoding using coherent-state qubits
- Naïve Bell-state measurement scheme
- Bell-state measurement scheme with optimized cost
- Probabilities of specific measurement results

3 Numerical calculation

- Methods for Monte-Carlo simulation
- Simulation results

Implementation of the scheme

5 Conclusion

イロト イ団ト イヨト イヨ

Concatenated Bell-state measurement

Parity encoding

$$\ket{0_L} := \left|+^{(m)}
ight
angle^{\otimes n}, \qquad \ket{1_L} := \left|-^{(m)}
ight
angle^{\otimes n}$$

where

$$\left|\pm^{(m)}\right\rangle := \left|H\right\rangle^{\otimes m} \pm \left|V\right\rangle^{\otimes m}$$

- Physical level: $|\pm\rangle:=\left|\pm^{(1)}\right\rangle=|H\rangle\pm|V\rangle$ \to Concatenate to form a block level
- Block level: $|\pm^{(m)}\rangle \rightarrow$ Concatenate to form a logical level
- Logical Level: $|0_L\rangle$, $|1_L\rangle$
- Generalization of Shor's 9-qubit code (n = 3, m = 3 case)

Ref)

F. Ewert, M. Bergmann, and P. van Loock, *Ultrafast Long-Distance Quantum Communication with Static Linear Optics*, Phys. Rev. Lett. 177, 210510 (2016).

S.-W. Lee, T. C. Ralph, and H. Jeong, Fundamental building block for all-optical scalable quantum networks,

Phys. Rev. A 100, 052303 (2019).

< □ > < □ > < □ > < □ > < □ >

Bell states

• Logical level

$$egin{aligned} \left| \Phi_{\pm}
ight
angle &:= \left| 0_L
ight
angle \left| 0_L
ight
angle \pm \left| 1_L
ight
angle \left| 1_L
ight
angle \ \left| \Psi_{\pm}
ight
angle &:= \left| 0_L
ight
angle \left| 1_L
ight
angle \pm \left| 1_L
ight
angle \left| 0_L
ight
angle \end{aligned}$$

イロト イヨト イヨト イヨ

Bell states

• Logical level

$$\begin{split} |\Phi_{\pm}\rangle &:= |0_L\rangle |0_L\rangle \pm |1_L\rangle |1_L\rangle \\ |\Psi_{\pm}\rangle &:= |0_L\rangle |1_L\rangle \pm |1_L\rangle |0_L\rangle \end{split}$$

• Block level

$$\begin{vmatrix} \phi_{\pm}^{(m)} \rangle := \left| +^{(m)} \rangle \left| +^{(m)} \rangle \pm \left| -^{(m)} \rangle \right| -^{(m)} \rangle \\ \left| \psi_{\pm}^{(m)} \rangle := \left| +^{(m)} \rangle \left| -^{(m)} \rangle \pm \left| -^{(m)} \rangle \right| +^{(m)} \rangle \end{aligned}$$

イロト イヨト イヨト イヨ

Bell states

• Logical level

$$\begin{split} |\Phi_{\pm}\rangle &:= |0_L\rangle |0_L\rangle \pm |1_L\rangle |1_L\rangle \\ |\Psi_{\pm}\rangle &:= |0_L\rangle |1_L\rangle \pm |1_L\rangle |0_L\rangle \end{split}$$

Block level

$$\begin{vmatrix} \phi_{\pm}^{(m)} \rangle := \left| +^{(m)} \rangle \left| +^{(m)} \rangle \pm \left| -^{(m)} \rangle \right| -^{(m)} \rangle \\ \left| \psi_{\pm}^{(m)} \rangle := \left| +^{(m)} \rangle \left| -^{(m)} \rangle \pm \left| -^{(m)} \rangle \right| +^{(m)} \rangle \end{aligned}$$

• Physical level

$$\begin{split} |\phi_{\pm}\rangle &:= \left|\phi_{\pm}^{(1)}\right\rangle = |+\rangle |+\rangle \pm |-\rangle |-\rangle \\ |\psi_{\pm}\rangle &:= \left|\psi_{\pm}^{(1)}\right\rangle = |+\rangle |-\rangle \pm |-\rangle |+\rangle \end{split}$$

Decomposition of Bell states

$$\begin{split} \left| \Phi_{+(-)} \right\rangle &= \frac{1}{\sqrt{2^{n-1}}} \sum_{j=\text{even}(\text{odd}) \leq n} \mathcal{P} \left[\left| \phi_{-}^{(m)} \right\rangle^{\otimes j} \left| \phi_{+}^{(m)} \right\rangle^{\otimes n-j} \right] \\ \left| \Psi_{+(-)} \right\rangle &= \frac{1}{\sqrt{2^{n-1}}} \sum_{j=\text{even}(\text{odd}) \leq n} \mathcal{P} \left[\left| \psi_{-}^{(m)} \right\rangle^{\otimes j} \left| \psi_{+}^{(m)} \right\rangle^{\otimes n-j} \right] \\ \left| \phi_{\pm}^{(m)} \right\rangle &= \frac{1}{\sqrt{2^{m-1}}} \sum_{k=\text{even} \leq m} \mathcal{P} \left[\left| \psi_{\pm} \right\rangle^{\otimes k} \left| \phi_{\pm} \right\rangle^{\otimes m-k} \right] \\ \left| \psi_{\pm}^{(m)} \right\rangle &= \frac{1}{\sqrt{2^{m-1}}} \sum_{k=\text{odd} \leq m} \mathcal{P} \left[\left| \psi_{\pm} \right\rangle^{\otimes k} \left| \phi_{\pm} \right\rangle^{\otimes m-k} \right] \end{split}$$

 $(\mathcal{P}[\cdot]:$ summation of all possible permutations of input tensor products.)

- Logical Bell state
 - n block Bell states

- Block Bell state
 - m physical Bell states

イロト イヨト イヨト イヨ

Decomposition of Bell states

$$\begin{split} \left| \Phi_{+(-)} \right\rangle &= \frac{1}{\sqrt{2^{n-1}}} \sum_{j=\text{even}(\text{odd}) \leq n} \mathcal{P} \left[\left| \phi_{-}^{(m)} \right\rangle^{\otimes j} \left| \phi_{+}^{(m)} \right\rangle^{\otimes n-j} \right] \\ \left| \Psi_{+(-)} \right\rangle &= \frac{1}{\sqrt{2^{n-1}}} \sum_{j=\text{even}(\text{odd}) \leq n} \mathcal{P} \left[\left| \psi_{-}^{(m)} \right\rangle^{\otimes j} \left| \psi_{+}^{(m)} \right\rangle^{\otimes n-j} \right] \\ \left| \phi_{\pm}^{(m)} \right\rangle &= \frac{1}{\sqrt{2^{m-1}}} \sum_{k=\text{even} \leq m} \mathcal{P} \left[\left| \psi_{\pm} \right\rangle^{\otimes k} \left| \phi_{\pm} \right\rangle^{\otimes m-k} \right] \\ \left| \psi_{\pm}^{(m)} \right\rangle &= \frac{1}{\sqrt{2^{m-1}}} \sum_{k=\text{odd} \leq m} \mathcal{P} \left[\left| \psi_{\pm} \right\rangle^{\otimes k} \left| \phi_{\pm} \right\rangle^{\otimes m-k} \right] \end{split}$$

 $(\mathcal{P}[\cdot]:$ summation of all possible permutations of input tensor products.)

- Logical Bell state
 - n block Bell states
 - Symbol: Symbol of block states
 - Sign: Parity of number of (-) sign block states

Block Bell state

• m physical Bell states

イロト イヨト イヨト イヨ

Decomposition of Bell states

$$\begin{split} \left| \Phi_{+(-)} \right\rangle &= \frac{1}{\sqrt{2^{n-1}}} \sum_{j=\text{even}(\text{odd}) \leq n} \mathcal{P} \left[\left| \phi_{-}^{(m)} \right\rangle^{\otimes j} \left| \phi_{+}^{(m)} \right\rangle^{\otimes n-j} \right] \\ \left| \Psi_{+(-)} \right\rangle &= \frac{1}{\sqrt{2^{n-1}}} \sum_{j=\text{even}(\text{odd}) \leq n} \mathcal{P} \left[\left| \psi_{-}^{(m)} \right\rangle^{\otimes j} \left| \psi_{+}^{(m)} \right\rangle^{\otimes n-j} \right] \\ \left| \phi_{\pm}^{(m)} \right\rangle &= \frac{1}{\sqrt{2^{m-1}}} \sum_{k=\text{even} \leq m} \mathcal{P} \left[\left| \psi_{\pm} \right\rangle^{\otimes k} \left| \phi_{\pm} \right\rangle^{\otimes m-k} \right] \\ \left| \psi_{\pm}^{(m)} \right\rangle &= \frac{1}{\sqrt{2^{m-1}}} \sum_{k=\text{odd} \leq m} \mathcal{P} \left[\left| \psi_{\pm} \right\rangle^{\otimes k} \left| \phi_{\pm} \right\rangle^{\otimes m-k} \right] \end{split}$$

 $(\mathcal{P}[\cdot]:$ summation of all possible permutations of input tensor products.)

- Logical Bell state
 - n block Bell states
 - Symbol: Symbol of block states
 - Sign: Parity of number of (-) sign block states

Block Bell state

- *m* physical Bell states
- Symbol: Parity of number of ψ physical states
- Sign: Sign of physical states

Decomposition of Bell states (cont.)

- Logical Bell state: n block Bell states
 - Symbol: Symbol of block states
 - Sign: Parity of number of (-) sign block states
- Block Bell state: m physical Bell states
 - Symbol: Parity of number of ψ physical states
 - Sign: Sign of physical states

• • • • • • • • • • • •

Decomposition of Bell states (cont.)

- Logical Bell state: n block Bell states
 - Symbol: Symbol of block states
 - Sign: Parity of number of (-) sign block states
- Block Bell state: m physical Bell states
 - Symbol: Parity of number of ψ physical states
 - Sign: Sign of physical states

Fault-tolerance

- Z errors (sign flip errors): Corrected at block level.
- X errors (symbol flip errors): Corrected at logical level.

Quantum repeater

Figure: from S.-W. Lee et al. (2019)

- Photons travelling long-range distance have exponentially decreasing probability to survive.
- Quantum repeater enables long-range quantum communication using an error-correction scheme in repeater stations.
- In each station, a Bell state is prepared and the input state is teleported to the outgoing state with error correction.

< □ > < 同 > < 回 > < Ξ > < Ξ

Quantum repeater (cont.)

Quantifying quantum repeater

Ref) S. Muralidharan, J. Kim, N, Lütkenhaus, M. D. Lukin, and L. Jiang, *Ultrafast and Fault-Tolerant Quantum Communication across Long Distances*, Phys. Rev. Lett. 112, 250501 (2014).

• Transmission probability

$$P_{s}^{tot} = P_{s,i}^{tot} + P_{s,x}^{tot} + P_{s,y}^{tot} + P_{s,z}^{tot} = (P_{s,i} + P_{s,x} + P_{s,y} + P_{s,z})^{L/L_0}$$

イロト イ団ト イヨト イヨ

Quantum repeater (cont.)

Quantifying quantum repeater

Ref) S. Muralidharan, J. Kim, N, Lütkenhaus, M. D. Lukin, and L. Jiang, *Ultrafast and Fault-Tolerant Quantum Communication across Long Distances*, Phys. Rev. Lett. 112, 250501 (2014).

• Transmission probability

$$P_{s}^{tot} = P_{s,i}^{tot} + P_{s,x}^{tot} + P_{s,y}^{tot} + P_{s,z}^{tot} = (P_{s,i} + P_{s,x} + P_{s,y} + P_{s,z})^{L/L_{0}}$$

• Effective rate of X/Z errors

$$Q_{X/Z} = \frac{1}{2} \left[1 - \frac{(P_{s,i} \mp P_{s,x} \pm P_{s,z} - P_{s,y})^{L/L_0}}{(P_{s,i} + P_{s,x} + P_{s,y} + P_{s,z})^{L/L_0}} \right]$$

イロト イ団ト イヨト イヨ

Quantum repeater (cont.)

Quantifying quantum repeater

Ref) S. Muralidharan, J. Kim, N, Lütkenhaus, M. D. Lukin, and L. Jiang, *Ultrafast and Fault-Tolerant Quantum Communication across Long Distances*, Phys. Rev. Lett. 112, 250501 (2014).

• Transmission probability

$$P_{s}^{tot} = P_{s,i}^{tot} + P_{s,x}^{tot} + P_{s,y}^{tot} + P_{s,z}^{tot} = (P_{s,i} + P_{s,x} + P_{s,y} + P_{s,z})^{L/L_0}$$

• Effective rate of X/Z errors

$$Q_{X/Z} = \frac{1}{2} \left[1 - \frac{(P_{s,i} \mp P_{s,x} \pm P_{s,z} - P_{s,y})^{L/L_0}}{(P_{s,i} + P_{s,x} + P_{s,y} + P_{s,z})^{L/L_0}} \right]$$

• Asymptotic key generation rate in QKD

$$R = \max[P_s^{tot} \left\{1 - 2h(Q)\right\} / t_0]$$

where $h(Q) = -Q \log_2(Q) - (1 - Q) \log_2(1 - Q)$, $Q = (Q_X + Q_Z)/2$, and t_0 is the time taken in one repeater station.

イロト イヨト イヨト イヨト

Coherent-state qubit

Coherent-state qubit: $\{ |\alpha\rangle, |-\alpha\rangle \}$

Bell-state measurement of coherent-state qubits Use a beam splitter (BS) & two photon number parity detectors (PNPDs).

$$\begin{aligned} &|\alpha\rangle \pm |-\alpha\rangle \left|-\alpha\rangle \xrightarrow{\mathsf{BS}} \left(\left|\sqrt{2}\alpha\right\rangle \pm \left|-\sqrt{2}\alpha\right\rangle\right) |0\rangle \\ &|\alpha\rangle \left|-\alpha\rangle \pm \left|-\alpha\right\rangle |\alpha\rangle \xrightarrow{\mathsf{BS}} |0\rangle \left(\left|\sqrt{2}\alpha\right\rangle \pm \left|-\sqrt{2}\alpha\right\rangle\right) \end{aligned}$$

Figure: from S.-W. Lee & H. Jeong, arXiv:1304.1214 (2013)

イロト イヨト イヨト イヨト

Interpreting the BSM result

Coherent-state qubit (cont.)

Properties of coherent-state qubit

• Less failure probability of Bell-state measurement than the case of polarization qubit of same photon number. Average failure probability *p*_{fail} is:

$$p_{\mathit{fail}} = rac{e^{-2|lpha|^2}}{1+e^{-4|lpha|^2}}$$

• • • • • • • • • •

Coherent-state qubit (cont.)

Properties of coherent-state qubit

• Less failure probability of Bell-state measurement than the case of polarization qubit of same photon number. Average failure probability *p*_{fail} is:

 $p_{\mathit{fail}} = rac{e^{-2|lpha|^2}}{1+e^{-4|lpha|^2}}$

Image: A mathematical states and a mathem

• By photon loss, it does not jump into the orthogonal space, but loses coherence (dephasing).

$$\begin{split} & |\alpha\rangle\!\langle\alpha| \to |\sqrt{\eta}\alpha\rangle\!\langle\sqrt{\eta}\alpha| \\ & |\alpha\rangle\langle-\alpha| \to e^{-2(1-\eta)|\alpha|^2} \left|\sqrt{\eta}\alpha\rangle\langle-\sqrt{\eta}\alpha\right| \end{split}$$

Table of Contents

Backgrounds

- Concatenated Bell-state measurement
- Quantum repeater
- Coherent-state qubits

2 Theoretical results

- Bell-state measurement of coherent-state qubits in lossy environment
- Parity encoding using coherent-state qubits
- Naïve Bell-state measurement scheme
- Bell-state measurement scheme with optimized cost
- Probabilities of specific measurement results

3 Numerical calculation

- Methods for Monte-Carlo simulation
- Simulation results
- Implementation of the scheme
- 5 Conclusion

Photon loss model

- Considering photon-loss model by
 - the Master equation under the Born-Markov approximation with the zero-temperature,

$$\frac{\partial \rho}{\partial \tau} = \gamma \sum_{i=1}^{N} \left(\hat{a}_i \rho \hat{a}_i^{\dagger} - \frac{1}{2} \hat{a}_i^{\dagger} \hat{a}_i \rho - \frac{1}{2} \rho \hat{a}_i^{\dagger} \hat{a}_i \right)$$

- or equivalently beam splitter model where the system is mixed with vacuum state by beam splitter, $(\eta=e^{-\gamma\tau/2})$

$$\begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix} \rightarrow \begin{pmatrix} \hat{a}' \\ \hat{b}' \end{pmatrix} = \begin{pmatrix} \sqrt{\eta} & -\sqrt{1-\eta} \\ \sqrt{1-\eta} & \sqrt{\eta} \end{pmatrix} \begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix}.$$

• Basis states of coherent-state qubit and their cross term transform as:

$$|\alpha\rangle\!\langle\alpha| \to |\sqrt{\eta}\alpha\rangle\!\langle\sqrt{\eta}\alpha| \,, \quad |\alpha\rangle\,\langle-\alpha| \to e^{-2\left(1-\sqrt{\eta}^2\right)|\alpha|^2} \,|\sqrt{\eta}\alpha\rangle\,\langle-\sqrt{\eta}\alpha| \,,$$

where η is the survival rate of photons.

Ref) S. M. Barnett & P. M. Radmore, Methods in Theoretical Quantum Optics, Clarendon Press (1997).

< □ > < □ > < □ > < □ > < □ >

Modified Bell-state measurement scheme

- {Π_x : x ∈ {0, 1, 2}}: orthogonal projectors s.t.
 - $\Pi_0 := |0_F \rangle \langle 0_F|$ • $\Pi_1 := \sum_{n:odd} |n_F \rangle \langle n_F|$ • $\Pi_2 := \sum_{n \neq 0:even} |n_F \rangle \langle n_F|$

 $(|n_{\sf F}\rangle$: a Fock state with *n* photon numbers)

• $\Pi_{x,y} := \Pi_x \otimes \Pi_y$ where $x, y \in \{0, 1, 2\}$

• Λ_{η} : Photon loss channel with survival rate η

$$\Lambda_{\eta_1,\eta_2} := \Lambda_{\eta_1} \otimes \Lambda_{\eta_2}$$

• Unitary channel corresponding to a beam splitter

(日) (四) (日) (日) (日)

POVM elements of Bell-state measurement in lossy environment

Positive-operator valued measure (POVM) elements $\{M_{x,y}\}_{x,y}$ where $x, y \in \{0, 1, 2\}$ are defined as

$$M_{x,y} := (\mathcal{U}_{\mathsf{BS}} \circ \Lambda_{\eta_1,\eta_2})^{\dagger} (\Pi_{x,y}),$$

Then

$$\mathbf{Pr}(x, y \mid \rho) = \mathsf{Tr}\left[\mathsf{\Pi}_{x, y}\left(\mathcal{U}_{\mathsf{BS}} \circ \Lambda_{\eta_1, \eta_2}\right)(\rho)\right] = \mathsf{Tr}\left(M_{x, y}\rho\right)$$

Modified Bell-state measurement scheme (cont.)

Assuming preceding photon loss model, matrix elements of each POVM element $M_{x,y}$ is calculated as:

where

$$c_{\pm} := \frac{1}{1 \pm e^{-4|\alpha|^2}}, \quad f_i(\eta) := \begin{cases} 1 & \text{if } i = 0\\ \sinh(\eta |\alpha|^2) & \text{if } i = 1 \\ \cosh(\eta |\alpha|^2) - 1 & \text{if } i = 2 \end{cases}, \quad \eta_{\pm} := \frac{\left(\sqrt{\eta_1} \pm \sqrt{\eta_2}\right)^2}{2}$$

A D F A A F F A

Modified Bell-state measurement scheme (cont.)

From the measurement result (x, y), assuming equal prior probability of each Bell state, choose a Bell state $|B\rangle \in \mathcal{B} = \{|\phi_+\rangle, |\phi_-\rangle, |\psi_+\rangle, |\psi_-\rangle\}$ which maximize

$$\Pr(B \mid x, y) = \frac{\Pr(x, y \mid B) \Pr(B)}{\sum_{|B'\rangle \in \mathcal{B}} \Pr(x, y \mid B) \Pr(B)} \propto \Pr(x, y \mid B) = \langle B \mid M_{x, y} \mid B \rangle$$
$$\Rightarrow |B\rangle = \operatorname{argmax}_{|B'\rangle \in \mathcal{B}} \langle B' \mid M_{x, y} \mid B' \rangle$$

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Modified Bell-state measurement scheme (cont.)

From the measurement result (x, y), assuming equal prior probability of each Bell state, choose a Bell state $|B\rangle \in \mathcal{B} = \{|\phi_+\rangle, |\phi_-\rangle, |\psi_+\rangle, |\psi_-\rangle\}$ which maximize

$$\Pr(B | x, y) = \frac{\Pr(x, y | B) \Pr(B)}{\sum_{|B'\rangle \in \mathcal{B}} \Pr(x, y | B) \Pr(B)} \propto \Pr(x, y | B) = \langle B | M_{x, y} | B \rangle$$
$$\Rightarrow |B\rangle = \operatorname{argmax}_{|B'\rangle \in \mathcal{B}} \langle B' | M_{x, y} | B' \rangle$$

By simple analysis, one can show the following result. $(M_{x,y}^B := \langle B | M_{x,y} | B \rangle$ for simplicity.)

$$\begin{cases} M_{x,y}^{\phi_{+}(\psi_{+})} > M_{x,y}^{\phi_{-}(\psi_{-})} & \text{if } x + y \text{: even} \\ M_{x,y}^{\phi_{+}(\psi_{+})} < M_{x,y}^{\phi_{-}(\psi_{-})} & \text{if } x + y \text{: odd} \end{cases} \qquad \frac{x \setminus y \quad 0 \quad 1 \quad 2}{0 \quad \phi_{+}/\psi_{+} \quad \psi_{-} \quad \psi_{+}} \\ \begin{cases} M_{x,y}^{\phi_{\pm}} > M_{x,y}^{\phi_{\pm}} & \text{if } x > y \\ M_{x,y}^{\phi_{\pm}} < M_{x,y}^{\psi_{\pm}} & \text{if } x < y \\ M_{x,y}^{\phi_{\pm}} = M_{x,y}^{\psi_{\pm}} & \text{if } x = y \end{cases} \qquad \frac{x \setminus y \quad 0 \quad 1 \quad 2}{0 \quad \phi_{+}/\psi_{+} \quad \psi_{-} \quad \psi_{+}} \\ \frac{1 \quad \phi_{-} \quad \phi_{+}/\psi_{+} \quad \psi_{-}}{2 \quad \phi_{+} \quad \phi_{-} \quad \phi_{+}/\psi_{+}} \\ \text{Table: Interpreting measurement results.} \end{cases}$$

Seokhyung Lee and Hyunseok Jeong (SQuiS)

Success, failure, and error probs. of BSM

- Assume equal prior probs. for four Bell states.
- Possible errors
 - X error: Symbol flip $(\phi \leftrightarrow \psi)$
 - Z error: Sign flip $(+\leftrightarrow -)$
 - Y error: Both symbol and sign flip
 - SND (or failure): Symbol is not determinable. (x = y)

Success, failure, and error probs. of BSM

- Assume equal prior probs. for four Bell states.
- Possible errors
 - X error: Symbol flip ($\phi \leftrightarrow \psi$)
 - Z error: Sign flip $(+ \leftrightarrow -)$
 - Y error: Both symbol and sign flip
 - SND (or failure): Symbol is not determinable. (*x* = *y*)

• Set $\eta_1 := \eta_0$, $\eta_2 := \eta_0 e^{-L_0/L_{\text{att}}}$

- $L_0 = 1$ km and $L_{att} = 22$ km
- Both systems suffer internal loss with survival rate of η_0 .
- Photons of second system travel distance of *L*₀.
- SND and Z error are much more probable then X and Y errors

•
$$p_X, p_Y \lessapprox 10^{-4}$$
.

Parity encoding using coherent-state qubits

Modified parity encoding for coherent-state qubits

$$|0_{L}(1_{L})\rangle := \left[N^{(m)}\left\{\left(|\alpha\rangle + |-\alpha\rangle\right)^{\otimes m} \pm \left(|\alpha\rangle - |-\alpha\rangle\right)^{\otimes m}\right\}\right]^{\otimes n}$$

Basis of each level

- Logical level $|0_L\rangle$, $|1_L\rangle \rightarrow |\Phi_{\pm}\rangle$, $|\Psi_{\pm}\rangle$
- Block level $|\pm^{(m)}\rangle := N^{(m)}\left\{ (|\alpha\rangle + |-\alpha\rangle)^{\otimes m} \pm (|\alpha\rangle |-\alpha\rangle)^{\otimes m} \right\} \rightarrow \left|\phi_{\pm}^{(m)}\rangle, \left|\psi_{\pm}^{(m)}\rangle\right.$
- Physical level $|\pm \alpha \rangle \rightarrow |\phi_{\pm} \rangle, |\psi_{\pm} \rangle$

イロト イ団ト イヨト イヨト

Parity encoding using coherent-state qubits (cont.)

Decomposition of Bell states

• Logical level \rightarrow Block level

$$\begin{split} \left| \Phi_{+(-)} \right\rangle &= N_2^{(n)} \sum_{j=\text{even}(\text{odd}) \le n} \left(C_-^{(m)} \right)^j \left(C_+^{(m)} \right)^{n-j} \mathcal{P} \left[\left| \phi_-^{(m)} \right\rangle^{\otimes j} \left| \phi_+^{(m)} \right\rangle^{\otimes n-j} \right] \\ \left| \Psi_{+(-)} \right\rangle &= N_2^{(n)} \sum_{j=\text{even}(\text{odd}) \le n} \left(C_-^{(m)} \right)^j \left(C_+^{(m)} \right)^{n-j} \mathcal{P} \left[\left| \psi_-^{(m)} \right\rangle^{\otimes j} \left| \psi_+^{(m)} \right\rangle^{\otimes n-j} \right] \end{split}$$

where

$$C_{\pm}^{(m)} = \sqrt{2} \left[1 \pm \left\{ \frac{\left(1 + e^{-2|\alpha|^2}\right)^m - \left(1 - e^{-2|\alpha|^2}\right)^m}{\left(1 + e^{-2|\alpha|^2}\right)^m + \left(1 - e^{-2|\alpha|^2}\right)^m} \right\}^2 \right]^{1/2}$$

 $\bullet \ \mathsf{Block} \ \mathsf{level} \to \mathsf{Physical} \ \mathsf{level}$

$$\begin{vmatrix} \phi_{\pm}^{(m)} \end{pmatrix} = \mathcal{N}_{1\pm}^{(m)} \sum_{k=\text{even} \le m} \mathcal{P} \left[|\psi_{\pm}\rangle^{\otimes k} |\phi_{\pm}\rangle^{\otimes m-k} \right] \\ \left|\psi_{\pm}^{(m)}\right\rangle = \mathcal{N}_{1\pm}^{(m)} \sum_{k=\text{odd} \le m} \mathcal{P} \left[|\psi_{\pm}\rangle^{\otimes k} |\phi_{\pm}\rangle^{\otimes m-k} \right]$$

Naïve Bell-state measurement scheme

Logical level (BSM₂)

$$\begin{split} \left| \Phi_{+(-)} \right\rangle &= N_2^{(n)} \sum_{j=\text{even}(\text{odd}) \le n} \left(C_-^{(m)} \right)^j \left(C_+^{(m)} \right)^{n-j} \mathcal{P} \left[\left| \phi_-^{(m)} \right\rangle^{\otimes j} \left| \phi_+^{(m)} \right\rangle^{\otimes n-j} \right] \\ \left| \Psi_{+(-)} \right\rangle &= N_2^{(n)} \sum_{j=\text{even}(\text{odd}) \le n} \left(C_-^{(m)} \right)^j \left(C_+^{(m)} \right)^{n-j} \mathcal{P} \left[\left| \psi_-^{(m)} \right\rangle^{\otimes j} \left| \psi_+^{(m)} \right\rangle^{\otimes n-j} \right] \end{split}$$

- Symbol: by majority vote of symbols of block Bell states
- Sign: by parity of the number of block Bell states with minus sign

イロト イヨト イヨト イ

Naïve Bell-state measurement scheme

Logical level (BSM₂)

$$\begin{split} \left| \Phi_{+(-)} \right\rangle &= N_2^{(n)} \sum_{j=\text{even}(\text{odd}) \le n} \left(C_-^{(m)} \right)^j \left(C_+^{(m)} \right)^{n-j} \mathcal{P} \left[\left| \phi_-^{(m)} \right\rangle^{\otimes j} \left| \phi_+^{(m)} \right\rangle^{\otimes n-j} \right] \\ \left| \Psi_{+(-)} \right\rangle &= N_2^{(n)} \sum_{j=\text{even}(\text{odd}) \le n} \left(C_-^{(m)} \right)^j \left(C_+^{(m)} \right)^{n-j} \mathcal{P} \left[\left| \psi_-^{(m)} \right\rangle^{\otimes j} \left| \psi_+^{(m)} \right\rangle^{\otimes n-j} \right] \end{split}$$

• Symbol: by majority vote of symbols of block Bell states

• Sign: by parity of the number of block Bell states with minus sign Block level (BSM₁)

$$\begin{split} \left| \phi_{\pm}^{(m)} \right\rangle &= \mathsf{N}_{1\pm}^{(m)} \sum_{k=\text{even} \leq m} \mathcal{P} \left[|\psi_{\pm}\rangle^{\otimes k} |\phi_{\pm}\rangle^{\otimes m-k} \right] \\ \left| \psi_{\pm}^{(m)} \right\rangle &= \mathsf{N}_{1\pm}^{(m)} \sum_{k=\text{odd} \leq m} \mathcal{P} \left[|\psi_{\pm}\rangle^{\otimes k} |\phi_{\pm}\rangle^{\otimes m-k} \right] \end{split}$$

• Symbol: by parity of the number of physical Bell states with ψ symbol

• Sign: by majority vote of signs of physical Bell states

Naïve Bell-state measurement scheme (cont.)

Physical level (BSM₀)

- Sign: Always determinable.
- Symbol: Not determinable if x = y.

$x \setminus y$	0	1	2
0	ϕ_+/ψ_+	ψ_{-}	ψ_+
1	ϕ_{-}	ϕ_+/ψ_+	ψ_{-}
2	ϕ_+	ϕ_{-}	ϕ_+/ψ_+

< D > < P > < P > < P >

Physical level (BSM₀)

- Sign: Always determinable.
- Symbol: Not determinable if x = y.

$x \setminus y$	0	1	2
0	ϕ_+/ψ_+	ψ_{-}	ψ_+
1	ϕ_{-}	ϕ_+/ψ_+	ψ_{-}
2	ϕ_+	ϕ_{-}	ϕ_+/ψ_+

Overall

- Sign of a Bell state of each level: Always determinable, if *m* is an odd number.
 - Block level (BSM₁): Majority vote of signs of BSM₀ always gives result, if *m* is an odd number.
 - Logical level (BSM₂): The number of BSM_1 giving minus sign is well-defined.
- Symbol of a Bell state of each level: Not always determinable. If symbol is not determinable, it is called 'SND' for physical/block level, and 'failure' for logical level.
 - Block level (BSM₁): If at least one BSM₀ is SND, we cannot determine the parity of the number of BSM₀ giving ψ symbol, so the BSM₁ is also SND.
 - Logical level (BSM₂): We can perform majority vote of symbols of BSM₁ excluding SND BSM₁. If all BSM₁s are SND, or majority vote fails, the BSM₂ is SND.

Bell-state measurement scheme with optimized cost

- Cost of concatenated BSM: Number of physical BSMs for one logical BSM.
- Naïve Bell-state measurement scheme have cost *nm*. How to optimize the cost?

Logical level (BSM₂)

- Scheme
 - Perform BSM₁s until we have *j* BSM₁s which is not SND.
 - After that, perform BSM_{1,sign}s for left block states, which determine only sign of a block Bell-state.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Logical level (BSM₂)

- Scheme
 - Perform BSM₁s until we have *j* BSM₁s which is not SND.
 - After that, perform BSM_{1,sign}s for left block states, which determine only sign of a block Bell-state.

- Interpreting the results
 - Symbol: by majority vote among *j* not-SND BSM₁s.
 - Sign: by parity of the number of block Bell states with minus sign determined by BSM₁s and BSM_{1,sign}s.

< □ > < 同 > < 回 > < Ξ > < Ξ

Logical level (BSM₂)

- Scheme
 - Perform BSM₁s until we have *j* BSM₁s which is not SND.
 - After that, perform BSM_{1,sign}s for left block states, which determine only sign of a block Bell-state.

- Interpreting the results
 - Symbol: by majority vote among *j* not-SND BSM₁s.
 - Sign: by parity of the number of block Bell states with minus sign determined by BSM₁s and BSM_{1,sign}s.
- Since we expect X error (symbol flip error) is much less likely than Z error (sign flip error), majority vote among only *j* not-SND BSM₁s would be enough.

< □ > < □ > < □ > < □ > < □ >

- d: Index of BSM₀
 - \rightarrow Enough to determine the sign of block Bell state.

• • • • • • • • • •

- d: Index of BSM₀
 - \rightarrow Enough to determine the sign of block Bell state.
- f: Index of first SND BSM₀, if exists.

イロト イヨト イヨト

- d: Index of BSM_0
 - \rightarrow Enough to determine the sign of block Bell state.
- f: Index of first SND BSM₀, if exists.

- d: Index of BSM₀
 - \rightarrow Enough to determine the sign of block Bell state.
- f: Index of first SND BSM₀, if exists.

• Sign: Determined by signs of the first *d* BSM₀s for all cases.

< □ > < 同 >

- d: Index of BSM₀
 - \rightarrow Enough to determine the sign of block Bell state.
- f: Index of first SND BSM₀, if exists.

- Sign: Determined by signs of the first *d* BSM₀s for all cases.
- Symbol:
 - Case 1: Determined by the parity of the number of states with symbol ψ.
 - Case 2 and 3: SND, since the existence of SND BSM₀ makes the parity of the number of ψ states ambiguous.

A B A B A B A

Bell-state measurement scheme with optimized cost (cont.)

Block level measuring only sign (BSM_{1,sign})

Image: A matched a matc

Bell-state measurement scheme with optimized cost (cont.)

Block level measuring only sign (BSM_{1,sign})

- Sign: Determined by signs of the first *d* BSM₀s.
- Symbol: No need to be determined

Bell-state measurement scheme with optimized cost (cont.)

Block level measuring only sign ($BSM_{1,sign}$)

- Sign: Determined by signs of the first *d* BSM₀s.
- Symbol: No need to be determined

Physical level (BSM₀)

- \bullet Currently, BSM_0 and $\mathsf{BSM}_{0,\mathsf{symbol}}$ are same.
- BSM_{0,sign}
 - Only need to determine the parity of x + y.
 - Need one PNPD instead of two.
 - Assume half amount of contribution to cost than full BSM₀.

Probabilities of specific measurement results

Probabilities of single block Bell-state measurement results

• Want: $\Pr(\mathbf{x}, \mathbf{y} | B_1)$, where $\mathbf{x}, \mathbf{y} \in \{0, 1, 2, 3\}^m$ and $|B_1\rangle \in \mathcal{B}_1 := \left\{ \left| \phi_{\pm}^{(m)} \right\rangle, \left| \psi_{\pm}^{(m)} \right\rangle \right\}$

Remind:

$$\begin{aligned} \mathbf{Pr}\left(x, y \mid B_{0}\right) &= \langle B_{0} \mid M_{x, y} \mid B_{0} \rangle \quad \text{for } B_{0} \in \mathcal{B}_{0} = \{ |\phi_{\pm}\rangle, |\psi_{\pm}\rangle \} \\ &\left| \phi_{\pm}^{(m)} \right\rangle = N_{1\pm}^{(m)} \sum_{k=\text{even} \leq m} \mathcal{P}\left[|\psi_{\pm}\rangle^{\otimes k} \mid \phi_{\pm}\rangle^{\otimes m-k} \right] \\ &\left| \psi_{\pm}^{(m)} \right\rangle = N_{1\pm}^{(m)} \sum_{k=\text{odd} \leq m} \mathcal{P}\left[|\psi_{\pm}\rangle^{\otimes k} \mid \phi_{\pm}\rangle^{\otimes m-k} \right] \end{aligned}$$

• For
$$B_1 = \left| \phi_{\pm}^{(m)} \right\rangle$$
,

$$\Pr\left(\mathbf{x}, \mathbf{y} \middle| \phi_{\pm}^{(m)} \right) = \left\langle \phi_{\pm}^{(m)} \middle| \bigotimes_{i=1}^{m} M_{x_i, y_i} \middle| \phi_{\pm}^{(m)} \right\rangle$$

$$= \left(N_{1\pm}^{(m)} \right)^2 \sum_{\substack{k,k' = \text{even} \le m}} \sum_{\substack{\bigotimes_{i=1}^{m} |P_i\rangle \in \text{Perm}\left[|\psi_{\pm}\rangle \otimes k' |\phi_{\pm}\rangle \otimes m-k' \right] \\ \bigotimes_{i=1}^{m} |P_i'\rangle \in \text{Perm}\left[|\psi_{\pm}\rangle \otimes k' |\phi_{\pm}\rangle \otimes m-k' \right]} \prod_{i=1}^{m} \left\langle P_i \middle| M_{x_i, y_i} \middle| P_i' \right\rangle$$

$$:= \left(N_{1\pm}^{(m)} \right)^2 \sum_{\substack{k,k' = \text{even} \le m}} g_{\pm}(m, k, k', \mathbf{x}, \mathbf{y})$$

Probabilities of specific measurement results (cont.)

Probabilities of single block Bell-state measurement results (cont.)

• Recurrence relation of function g (omit x and y)

$$g_{\pm}(m,k,k') = g_{\pm}(m-1,k,k')M_{11}^{(m)\pm} + [g_{\pm}(m-1,k,k'-1) \\ + g_{\pm}(m-1,k-1,k')]M_{12}^{(m)\pm} + g_{\pm}(m-1,k-1,k'-1)M_{22}^{(m)\pm}$$

where

$$M_{11}^{(i)\pm} := \langle \phi_{\pm} | \, \hat{M}_{x_i, y_i} \, | \phi_{\pm} \rangle \,, \ M_{12}^{(i)\pm} := \langle \phi_{\pm} | \, \hat{M}_{x_i, y_i} \, | \psi_{\pm} \rangle \,, \ M_{22}^{(i)\pm} := \langle \psi_{\pm} | \, \hat{M}_{x_i, y_i} \, | \psi_{\pm} \rangle \,.$$

Define H[±]_m

$$\mathbf{H}_{m}^{\pm} := \begin{pmatrix} \sum_{k,k': \text{even} \leq m} g_{\pm}(m,k,k') & \sum_{k: \text{even} \leq m} g_{\pm}(m,k,k') \\ \sum_{\substack{k: \text{odd} \leq m \\ k': \text{even} \leq m}} g_{\pm}(m,k,k') & \sum_{k,k': \text{odd} \leq m} g_{\pm}(m,k,k'). \end{pmatrix}$$

• Recurrence relation of $\tilde{\mathbf{H}}_m^{\pm} := \left(H_{m,11}^{\pm}, H_{m,12}^{\pm}, H_{m,21}^{\pm}, H_{m,22}^{\pm}\right)$

$$\begin{split} \tilde{\mathbf{H}}_{m}^{\pm} &= \begin{pmatrix} M_{11}^{(m)\pm} & M_{12}^{(m)\pm} & M_{12}^{(m)\pm} & M_{22}^{(m)\pm} \\ M_{12}^{(m)\pm} & M_{11}^{(m)\pm} & M_{22}^{(m)\pm} & M_{12}^{(m)\pm} \\ M_{12}^{(m)\pm} & M_{12}^{(m)\pm} & M_{12}^{(m)\pm} & M_{12}^{(m)\pm} \\ M_{12}^{(m)\pm} & M_{12}^{(m)\pm} & M_{12}^{(m)\pm} & M_{11}^{(m)\pm} \end{pmatrix} \tilde{\mathbf{H}}_{m-1}^{\pm} &:= \tilde{\mathbf{M}}_{m}^{\pm}\tilde{\mathbf{H}}_{m-1}^{\pm} \\ &\longrightarrow \tilde{\mathbf{M}}_{m}^{\pm} \cdots \tilde{\mathbf{M}}_{1}^{\pm} (1, 0, 0, 0)^{T} \end{split}$$

Seokhyung Lee and Hyunseok Jeong (SQuiS)

Probabilities of specific measurement results (cont.)

Simple matrix-form expression of $Pr(\mathbf{x}, \mathbf{y} | B_1)$

$$\begin{split} & \mathbf{Pr}\left(\mathbf{x}, \mathbf{y} \middle| \phi_{\pm}^{(m)}\right) = \left(N_{1\pm}^{(m)}\right)^{2} \tilde{H}_{m1}^{\pm}(\mathbf{x}, \mathbf{y}), \\ & \mathbf{Pr}\left(\mathbf{x}, \mathbf{y} \middle| \psi_{\pm}^{(m)}\right) = \left(N_{1\pm}^{(m)}\right)^{2} \tilde{H}_{m4}^{\pm}(\mathbf{x}, \mathbf{y}), \end{split}$$

where

$$\tilde{\boldsymbol{\mathsf{H}}}_{m}^{\pm}(\boldsymbol{x},\boldsymbol{y}) = \tilde{\boldsymbol{\mathsf{M}}}_{m}^{\pm}(\boldsymbol{x},\boldsymbol{y})\cdots\tilde{\boldsymbol{\mathsf{M}}}_{1}(\boldsymbol{x},\boldsymbol{y})(1,0,0,0)^{T}$$

with

$$\tilde{\mathbf{M}}_{i}^{\pm}(\mathbf{x},\mathbf{y}) = \begin{pmatrix} M_{11}^{(i)\pm} & M_{12}^{(i)\pm} & M_{12}^{(i)\pm} & M_{22}^{(i)\pm} \\ M_{12}^{(i)\pm} & M_{11}^{(i)\pm} & M_{22}^{(i)\pm} & M_{12}^{(i)\pm} \\ M_{12}^{(i)\pm} & M_{22}^{(i)\pm} & M_{11}^{(i)\pm} & M_{12}^{(i)\pm} \\ M_{22}^{(i)\pm} & M_{12}^{(i)\pm} & M_{12}^{(i)\pm} & M_{11}^{(i)\pm} \end{pmatrix}$$

and

$$M_{11}^{(i)\pm} := \langle \phi_{\pm} | \ \hat{M}_{x_{i},y_{i}} | \phi_{\pm} \rangle \ , \ M_{12}^{(i)\pm} := \langle \phi_{\pm} | \ \hat{M}_{x_{i},y_{i}} | \psi_{\pm} \rangle \ , \ M_{22}^{(i)\pm} := \langle \psi_{\pm} | \ \hat{M}_{x_{i},y_{i}} | \psi_{\pm} \rangle \ .$$

イロト イヨト イヨト イ

Probabilities of specific measurement results (cont.)

Probabilities of logical Bell-state measurement results (cont.)

• Want: $\operatorname{Pr}(\mathbf{X}, \mathbf{Y} | B_2)$, where $\mathbf{X}, \mathbf{Y} \in \{0, 1, 2, 3\}^{n \times m}$ and $|B_2\rangle \in \mathcal{B}_2 := \{|\Phi_{\pm}\rangle, |\Psi_{\pm}\rangle\}$

Simple matrix-form expression of $Pr(X, Y | B_2)$

$$\begin{split} & \operatorname{Pr}\left(\mathbf{X},\mathbf{Y} \mid \Phi_{+}\right) = \left(N_{2}^{(n)}\right)^{2} \tilde{H}_{n1}(\mathbf{X},\mathbf{Y}), \\ & \operatorname{Pr}\left(\mathbf{X},\mathbf{Y} \mid \Phi_{-}\right) = \left(N_{2}^{(n)}\right)^{2} \tilde{H}_{n2}(\mathbf{X},\mathbf{Y}), \end{split}$$

where

$$\tilde{\mathbf{H}}_{n}(\mathbf{X},\mathbf{Y}) = \tilde{\mathbf{M}}_{n}(\mathbf{X},\mathbf{Y})\cdots\tilde{\mathbf{M}}_{1}(\mathbf{X},\mathbf{Y}) \begin{pmatrix} 1\\ 0 \end{pmatrix}, \quad \text{with} \quad \tilde{\mathbf{M}}_{i}(\mathbf{X},\mathbf{Y}) = \begin{pmatrix} M_{11}^{(i)} & M_{22}^{(i)} \\ M_{22}^{(i)} & M_{11}^{(i)} \end{pmatrix}$$

and

$$M_{11}^{(i)} := \left(C_{+}^{(m)}\right)^{2} \left\langle \phi_{+}^{(m)} \middle| \hat{M}_{B}^{(i)} \middle| \phi_{+}^{(m)} \right\rangle, \ M_{22}^{(i)} := \left(C_{-}^{(m)}\right)^{2} \left\langle \phi_{-}^{(m)} \middle| \hat{M}_{B}^{(i)} \middle| \phi_{-}^{(m)} \right\rangle, \quad \text{and} \quad \hat{M}_{B}^{(i)} = \bigotimes_{j=1}^{m} \hat{M}_{X_{ij},Y_{ij}}$$

< □ > < □ > < □ > < □ > < □ >

Table of Contents

Backgrounds

- Concatenated Bell-state measurement
- Quantum repeater
- Coherent-state qubits

Theoretical results

- Bell-state measurement of coherent-state qubits in lossy environment
- Parity encoding using coherent-state qubits
- Naïve Bell-state measurement scheme
- Bell-state measurement scheme with optimized cost
- Probabilities of specific measurement results

3 Numerical calculation

- Methods for Monte-Carlo simulation
- Simulation results
- Implementation of the scheme
- Conclusion

Methods for Monte-Carlo simulation

- Parameters: $n, m, \alpha, \eta_1, \eta_2, j$
- We tried Monte-Carlo simulation, which randomly samples results and counts the number of success or error.

Randomly sampling measurement results

- Assume a prior distribution for four logical Bell states $\mathcal{B}_2 = \{\Phi_{\pm}, \Psi_{\pm}\}.$
- Need to sample $nm BSM_0$ measurement results, each of which gives (x, y) where $x, y \in \{0, 1, 2\} \longrightarrow x_{11}, y_{11}, \cdots, x_{nm}, y_{nm}$
- Sample each BSM₀ measurement result one by one with conditional probability where $B_2 \in \mathcal{B}_2$:

$$\mathsf{Pr}(x_{pq}, y_{pq} \,|\, x_{11}, y_{11}, \cdots, x_{p,q-1}, y_{p,q-1}; B_2) \propto \mathsf{Pr}(x_{11}, y_{11}, \cdots, x_{p,q}, y_{p,q} \,|\, B_2)$$

• The conditional probability can be expressed with \tilde{H} we used for matrix-form expression of $\Pr(\mathbf{X}, \mathbf{Y} | B_2)$ and $\Pr(\mathbf{x}, \mathbf{y} | B_1)$.

< □ > < □ > < □ > < □ > < □ >

Simulation results

Success probability of single logical CBSM against cost

• $\eta_1 = \eta_2 = \eta$. Optimization of α is taken in range of $\alpha \leq 2$

Image: A matching of the second se

Simulation results (cont.)

Success probability of single logical CBSM against α

- $\alpha = 1.2$ (left), $\alpha = 1.8$ (right).
- $\eta_1 = \eta_2 = \eta = 0.99.$
- α should be large enough to make efficient CBSM possible.

Image: A math a math

Simulation results (cont.)

Key generation rate R for quantum key distribution

• Effective total cost optimizing for α , L_0 , and j, when L = 1000 km.

- Rt_0 optimizing for α and j, when $L_0 = 0.8$ km and L = 1000 km.
- Effective total cost $C_{tot} = C_{BSM} \left(\frac{L}{L_0} \right) / (Rt_0)$
- Optimal at n = 3, m = 33, $\alpha = 1.95$, $L_0 = 0.75$ km, j = 1. $C_{tot} = (1.00 \pm 0.01) \times 10^5$.

• • • • • • • • • • •

Table of Contents

Backgrounds

- Concatenated Bell-state measurement
- Quantum repeater
- Coherent-state qubits

Theoretical results

- Bell-state measurement of coherent-state qubits in lossy environment
- Parity encoding using coherent-state qubits
- Naïve Bell-state measurement scheme
- Bell-state measurement scheme with optimized cost
- Probabilities of specific measurement results

3 Numerical calculation

- Methods for Monte-Carlo simulation
- Simulation results

Implementation of the scheme

Conclusion

イロト イヨト イヨト イヨ

Implementation of the scheme

Preparation of $|0_L\rangle$ and $|1_L\rangle$

Image: A math a math

Implementation of the scheme

CNOT gate

・ロト ・回ト ・目下

Table of Contents

Backgrounds

- Concatenated Bell-state measurement
- Quantum repeater
- Coherent-state qubits

2 Theoretical results

- Bell-state measurement of coherent-state qubits in lossy environment
- Parity encoding using coherent-state qubits
- Naïve Bell-state measurement scheme
- Bell-state measurement scheme with optimized cost
- Probabilities of specific measurement results

3 Numerical calculation

- Methods for Monte-Carlo simulation
- Simulation results

Implementation of the scheme

Conclusion

イロト イヨト イヨト イヨ

Conclusion

- We investigated Bell-state measurement scheme with coherent-state qubits in lossy environment.
- We suggested parity encoding scheme using coherent-state qubits and concatenated Bell-state measurement (CBSM) scheme with optimized cost.
- We got analytic expressions of probabilities for getting each specific measurement results, and then performed Monte-Carlo simulations for success probabilities and error rates.
- Numerical calculation shows that CBSM with coherent-state can achieve high success probability and high key generation rate $Rt_0 \approx 0.8$. For that to be possible, α should be large enough ($\alpha \gtrsim 1.2$) and $m \gtrsim 35$, while *n* does not affect the performance much.
- However, suggested CBSM protocol with coherent state is not yet good enough compared to CBSM with polarization qubit in S.-W. Lee et al. (2019).
- Future works will include developing $BSM_{0,symbol}$, simulating for $j \ge 2$, simulating for larger m, and methods to physically realize this CBSM scheme.

イロト イヨト イヨト イヨト

Thank you for your attention!

Seokhyung Lee and Hyunseok Jeong (SQuiS) Concatenated BSM with Coherent States

イロト イポト イヨト イ