Fault-tolerant Concatenated Bell-state Measurement with Coherent-state Qubits

Seokhyung Lee and Hyunseok Jeong

SNU Quantum Information Science Group

June 1, 2020

Seokhyung Lee and Hyunseok Jeong (SQuiS) [Concatenated BSM with Coherent States](#page-59-0) June 1, 2020 1/40

 \cap \cap

∢ ロ ▶ - ∢ 何 ▶ - ∢ ヨ

Table of Contents

[Backgrounds](#page-2-0)

- **[Concatenated Bell-state measurement](#page-3-0)**
- [Quantum repeater](#page-12-0)
- [Coherent-state qubits](#page-16-0)

[Theoretical results](#page-19-0)

- [Bell-state measurement of coherent-state qubits in lossy environment](#page-20-0)
- [Parity encoding using coherent-state qubits](#page-27-0)
- Naïve Bell-state measurement scheme
- [Bell-state measurement scheme with optimized cost](#page-33-0)
- [Probabilities of specific measurement results](#page-45-0)

³ [Numerical calculation](#page-49-0)

- [Methods for Monte-Carlo simulation](#page-50-0)
- **[Simulation results](#page-51-0)**

4 [Implementation of the scheme](#page-54-0)

[Conclusion](#page-57-0)

 Ω

イロト イ押ト イヨト イヨ

Table of Contents

[Backgrounds](#page-2-0)

- **[Concatenated Bell-state measurement](#page-3-0)**
- [Quantum repeater](#page-12-0)
- [Coherent-state qubits](#page-16-0)

² [Theoretical results](#page-19-0)

- [Bell-state measurement of coherent-state qubits in lossy environment](#page-20-0)
- [Parity encoding using coherent-state qubits](#page-27-0)
- [Na¨ıve Bell-state measurement scheme](#page-29-0)
- [Bell-state measurement scheme with optimized cost](#page-33-0)
- [Probabilities of specific measurement results](#page-45-0)

[Numerical calculation](#page-49-0)

- **[Methods for Monte-Carlo simulation](#page-50-0)**
- [Simulation results](#page-51-0)

[Implementation of the scheme](#page-54-0)

 Ω

メロトメ 倒 トメ ミトメ 毛

Parity encoding

$$
|0_L\rangle := \left| +^{(m)} \right\rangle^{\otimes n}, \qquad |1_L\rangle := \left| -^{(m)} \right\rangle^{\otimes n}
$$

where

$$
\left|\pm^{(m)}\right\rangle:=\left|H\right\rangle^{\otimes m}\pm\left|V\right\rangle^{\otimes m}
$$

- Physical level: $|\pm\rangle := |\pm^{(1)}\rangle = |H\rangle \pm |V\rangle \rightarrow$ Concatenate to form a block level
- Block level: $\ket{\pm^{(m)}} \rightarrow \textsf{Concatenate}$ to form a logical level
- Logical Level: $|0_L\rangle$, $|1_L\rangle$
- Generalization of Shor's 9-qubit code ($n = 3$, $m = 3$ case)

Ref)

F. Ewert, M. Bergmann, and P. van Loock, Ultrafast Long-Distance Quantum Communication with Static Linear Optics, Phys. Rev. Lett. 177, 210510 (2016).

S.-W. Lee, T. C. Ralph, and H. Jeong, Fundamental building block for all-optical scalable quantum networks,

Phys. Rev. A 100, 052303 (2019).

つへへ

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶

Concatenated Bell-state measurement (cont.)

Bell states

· Logical level

$$
|\Phi_{\pm}\rangle := |0_L\rangle |0_L\rangle \pm |1_L\rangle |1_L\rangle
$$

$$
|\Psi_{\pm}\rangle := |0_L\rangle |1_L\rangle \pm |1_L\rangle |0_L\rangle
$$

 299

イロト イ御 トイ ヨ トイ ヨ

Bell states

· Logical level

$$
|\Phi_{\pm}\rangle := |0_L\rangle |0_L\rangle \pm |1_L\rangle |1_L\rangle
$$

$$
|\Psi_{\pm}\rangle := |0_L\rangle |1_L\rangle \pm |1_L\rangle |0_L\rangle
$$

• Block level

$$
\left| \phi_{\pm}^{(m)} \right\rangle := \left| +^{(m)} \right\rangle \left| +^{(m)} \right\rangle \pm \left| -^{(m)} \right\rangle \left| -^{(m)} \right\rangle
$$

$$
\left| \psi_{\pm}^{(m)} \right\rangle := \left| +^{(m)} \right\rangle \left| -^{(m)} \right\rangle \pm \left| -^{(m)} \right\rangle \left| +^{(m)} \right\rangle
$$

 Ω

メロトメ 倒 トメ ミトメ 毛

Bell states

· Logical level

$$
|\Phi_{\pm}\rangle := |0_L\rangle |0_L\rangle \pm |1_L\rangle |1_L\rangle
$$

$$
|\Psi_{\pm}\rangle := |0_L\rangle |1_L\rangle \pm |1_L\rangle |0_L\rangle
$$

• Block level

$$
\begin{array}{c} \left| \phi_{\pm}^{(m)} \right\rangle := \left| +^{(m)} \right\rangle \left| +^{(m)} \right\rangle \pm \left| -^{(m)} \right\rangle \left| -^{(m)} \right\rangle \\ \left| \psi_{\pm}^{(m)} \right\rangle := \left| +^{(m)} \right\rangle \left| -^{(m)} \right\rangle \pm \left| -^{(m)} \right\rangle \left| +^{(m)} \right\rangle \end{array}
$$

• Physical level

$$
|\phi_{\pm}\rangle := \left|\phi_{\pm}^{(1)}\right\rangle = |+\rangle |+\rangle \pm |-\rangle |-\rangle
$$

$$
|\psi_{\pm}\rangle := \left|\psi_{\pm}^{(1)}\right\rangle = |+\rangle |-\rangle \pm |-\rangle |+\rangle
$$

Seokhyung Lee and Hyunseok Jeong (SQuiS) [Concatenated BSM with Coherent States](#page-0-0) June 1, 2020 5/40

メロメ オ部メ メミメメ

 299

Decomposition of Bell states

$$
\begin{split} \left|\Phi_{+(-)}\right>=\frac{1}{\sqrt{2^{n-1}}}\sum_{j=\text{even(odd)}\leq n}\mathcal{P}\left[\left|\phi_{-}^{(m)}\right>^{\otimes j}\left|\phi_{+}^{(m)}\right>^{\otimes n-j}\right]\\ \left|\Psi_{+(-)}\right>=\frac{1}{\sqrt{2^{n-1}}}\sum_{j=\text{even(odd)}\leq n}\mathcal{P}\left[\left|\psi_{-}^{(m)}\right>^{\otimes j}\left|\psi_{+}^{(m)}\right>^{\otimes n-j}\right]\\ \left|\phi_{\pm}^{(m)}\right>=\frac{1}{\sqrt{2^{m-1}}}\sum_{k=\text{even}\leq m}\mathcal{P}\left[\left|\psi_{\pm}\right>^{\otimes k}\left|\phi_{\pm}\right>^{\otimes m-k}\right]\\ \left|\psi_{\pm}^{(m)}\right>=\frac{1}{\sqrt{2^{m-1}}}\sum_{k=\text{odd}\leq m}\mathcal{P}\left[\left|\psi_{\pm}\right>^{\otimes k}\left|\phi_{\pm}\right>^{\otimes m-k}\right] \end{split}
$$

 $(P[\cdot]$: summation of all possible permutations of input tensor products.)

- Logical Bell state
	- **a** *n* block Bell states
- **•** Block Bell state
	- *m* physical Bell states

イロト イ御 トイ ヨ トイ ヨ

Decomposition of Bell states

$$
\begin{split} \left|\Phi_{+(-)}\right>=\frac{1}{\sqrt{2^{n-1}}}\sum_{j=\text{even(odd)}\leq n}\mathcal{P}\left[\left|\phi_{-}^{(m)}\right>^{\otimes j}\left|\phi_{+}^{(m)}\right>^{\otimes n-j}\right]\\ \left|\Psi_{+(-)}\right>=\frac{1}{\sqrt{2^{n-1}}}\sum_{j=\text{even(odd)}\leq n}\mathcal{P}\left[\left|\psi_{-}^{(m)}\right>^{\otimes j}\left|\psi_{+}^{(m)}\right>^{\otimes n-j}\right]\\ \left|\phi_{\pm}^{(m)}\right>=\frac{1}{\sqrt{2^{m-1}}}\sum_{k=\text{even}\leq m}\mathcal{P}\left[\left|\psi_{\pm}\right>^{\otimes k}\left|\phi_{\pm}\right>^{\otimes m-k}\right]\\ \left|\psi_{\pm}^{(m)}\right>=\frac{1}{\sqrt{2^{m-1}}}\sum_{k=\text{odd}\leq m}\mathcal{P}\left[\left|\psi_{\pm}\right>^{\otimes k}\left|\phi_{\pm}\right>^{\otimes m-k}\right] \end{split}
$$

 $(P[\cdot]$: summation of all possible permutations of input tensor products.)

- **•** Logical Bell state
	- **n** block Bell states
	- Symbol: Symbol of block states
	- Sign: Parity of number of (-) sign block states

• Block Bell state

• *m* physical Bell states

イロト イ御 トイ ヨ トイ ヨ

Decomposition of Bell states

$$
\begin{split} \left|\Phi_{+(-)}\right>=\frac{1}{\sqrt{2^{n-1}}}\sum_{j=\text{even(odd)}\leq n}\mathcal{P}\left[\left|\phi_{-}^{(m)}\right>^{\otimes j}\left|\phi_{+}^{(m)}\right>^{\otimes n-j}\right]\\ \left|\Psi_{+(-)}\right>=\frac{1}{\sqrt{2^{n-1}}}\sum_{j=\text{even(odd)}\leq n}\mathcal{P}\left[\left|\psi_{-}^{(m)}\right>^{\otimes j}\left|\psi_{+}^{(m)}\right>^{\otimes n-j}\right]\\ \left|\phi_{\pm}^{(m)}\right>=\frac{1}{\sqrt{2^{m-1}}}\sum_{k=\text{even}\leq m}\mathcal{P}\left[\left|\psi_{\pm}\right>^{\otimes k}\left|\phi_{\pm}\right>^{\otimes m-k}\right]\\ \left|\psi_{\pm}^{(m)}\right>=\frac{1}{\sqrt{2^{m-1}}}\sum_{k=\text{odd}\leq m}\mathcal{P}\left[\left|\psi_{\pm}\right>^{\otimes k}\left|\phi_{\pm}\right>^{\otimes m-k}\right] \end{split}
$$

 $(P[\cdot]$: summation of all possible permutations of input tensor products.)

- **•** Logical Bell state
	- **n** block Bell states
	- Symbol: Symbol of block states
	- Sign: Parity of number of (-) sign block states

• Block Bell state

- *m* physical Bell states
- Symbol: Parity of number of ψ physical states
- Sign: Sign of physical states K ロト K 御 ト K 君 ト K 君 K

Concatenated Bell-state measurement (cont).

Decomposition of Bell states (cont.)

- Logical Bell state: *n* block Bell states
	- Symbol: Symbol of block states
	- Sign: Parity of number of (-) sign block states
- \bullet Block Bell state: m physical Bell states
	- Symbol: Parity of number of ψ physical states
	- Sign: Sign of physical states

 Ω

K ロ ▶ K 何 ▶ K ヨ ▶ K

Concatenated Bell-state measurement (cont).

Decomposition of Bell states (cont.)

- Logical Bell state: *n* block Bell states
	- Symbol: Symbol of block states
	- Sign: Parity of number of (-) sign block states
- \bullet Block Bell state: m physical Bell states
	- Symbol: Parity of number of ψ physical states
	- Sign: Sign of physical states

Fault-tolerance

- Z errors (sign flip errors): Corrected at block level.
- X errors (symbol flip errors): Corrected at logical level.

 \cap \cap

イロト イ押ト イヨト イ

Quantum repeater

Figure: from S.-W. Lee et al. (2019)

- Photons travelling long-range distance have exponentially decreasing probability to survive.
- Quantum repeater enables long-range quantum communication using an error-correction scheme in repeater stations.
- In each station, a Bell state is prepared and the input state is teleported to the outgoing state with error correction.

 Ω

K ロ ⊁ K 個 ▶ K ミ ▶ K

Quantum repeater (cont.)

Quantifying quantum repeater

Ref) S. Muralidharan, J. Kim, N, Lütkenhaus, M. D. Lukin, and L. Jiang, Ultrafast and Fault-Tolerant Quantum Communication across Long Distances, Phys. Rev. Lett. 112, 250501 (2014).

• Transmission probability

$$
P_{s}^{tot} = P_{s,i}^{tot} + P_{s,x}^{tot} + P_{s,y}^{tot} + P_{s,z}^{tot} = (P_{s,i} + P_{s,x} + P_{s,y} + P_{s,z})^{L/L_0}
$$

 Ω

メロトメ 倒 トメ ミトメ 毛

Quantum repeater (cont.)

Quantifying quantum repeater

Ref) S. Muralidharan, J. Kim, N, Lütkenhaus, M. D. Lukin, and L. Jiang, Ultrafast and Fault-Tolerant Quantum Communication across Long Distances, Phys. Rev. Lett. 112, 250501 (2014).

• Transmission probability

$$
P_{s}^{tot} = P_{s,i}^{tot} + P_{s,x}^{tot} + P_{s,y}^{tot} + P_{s,z}^{tot} = (P_{s,i} + P_{s,x} + P_{s,y} + P_{s,z})^{L/L_0}
$$

• Effective rate of X/Z errors

$$
Q_{X/Z} = \frac{1}{2} \left[1 - \frac{(P_{s,i} \mp P_{s,x} \pm P_{s,z} - P_{s,y})^{L/L_0}}{(P_{s,i} + P_{s,x} + P_{s,y} + P_{s,z})^{L/L_0}} \right]
$$

 Ω

メロトメ 倒 トメ ミトメ 毛

Quantum repeater (cont.)

Quantifying quantum repeater

Ref) S. Muralidharan, J. Kim, N, Lütkenhaus, M. D. Lukin, and L. Jiang, Ultrafast and Fault-Tolerant Quantum Communication across Long Distances, Phys. Rev. Lett. 112, 250501 (2014).

• Transmission probability

$$
P_{s}^{tot} = P_{s,i}^{tot} + P_{s,x}^{tot} + P_{s,y}^{tot} + P_{s,z}^{tot} = (P_{s,i} + P_{s,x} + P_{s,y} + P_{s,z})^{L/L_0}
$$

• Effective rate of X/Z errors

$$
Q_{X/Z} = \frac{1}{2} \left[1 - \frac{(P_{s,i} \mp P_{s,x} \pm P_{s,z} - P_{s,y})^{L/L_0}}{(P_{s,i} + P_{s,x} + P_{s,y} + P_{s,z})^{L/L_0}} \right]
$$

Asymptotic key generation rate in QKD

$$
R = max[P_s^{tot} \{1 - 2h(Q)\} / t_0]
$$

where $h(Q) = -Q\log_2(Q) - (1-Q)\log_2(1-Q)$, $Q = (Q_X+Q_Z)/2$, and t_0 is the time taken in one repeater station.

 Ω

メロトメ部 トメミトメミト

Coherent-state qubit

Coherent-state qubit: $\{ |\alpha\rangle, |-\alpha\rangle \}$

Bell-state measurement of coherent-state qubits Use a beam splitter (BS) & two photon number parity detectors (PNPDs).

$$
|\alpha\rangle|\alpha\rangle \pm |-\alpha\rangle|\alpha\rangle \xrightarrow{BS} (|\sqrt{2}\alpha\rangle \pm |-\sqrt{2}\alpha\rangle)|0\rangle
$$

$$
|\alpha\rangle|\alpha\rangle \pm |-\alpha\rangle|\alpha\rangle \xrightarrow{BS} |0\rangle (|\sqrt{2}\alpha\rangle \pm |-\sqrt{2}\alpha\rangle)
$$

 \rangle Figure: from S.-W. Lee & H.
 \rangle Jeong, arXiv:1304.1214 (2013)

メロトメ 御 トメ ミトメ ミト

Interpreting the BSM result

(even, 0) : $|\phi_+\rangle$ (0, even) : $|\psi_+\rangle$ $(\text{odd}, 0) : | \phi_-\rangle$ (0, odd) : $| \psi_-\rangle$

Coherent-state qubit (cont.)

Properties of coherent-state qubit

Less failure probability of Bell-state measurement than the case of polarization qubit of same photon number. Average failure probability p_{fail} is:

$$
p_{fail} = \frac{e^{-2|\alpha|^2}}{1 + e^{-4|\alpha|^2}}
$$

← ロ ▶ → イ 何 →

Coherent-state qubit (cont.)

Properties of coherent-state qubit

Less failure probability of Bell-state measurement than the case of polarization qubit of same photon number. Average failure probability p_{fail} is:

 $p_{fail} = \frac{e^{-2|\alpha|^2}}{1+e^{-4|\alpha|^2}}$

 $1+e^{-4|\alpha|^2}$

 $A \Box B$ $A \Box B$ $A \Box B$

• By photon loss, it does not jump into the orthogonal space, but loses coherence (dephasing).

$$
|\alpha\rangle\langle\alpha| \to |\sqrt{\eta}\alpha\rangle\langle\sqrt{\eta}\alpha|
$$

$$
|\alpha\rangle\langle-\alpha| \to e^{-2(1-\eta)|\alpha|^2}|\sqrt{\eta}\alpha\rangle\langle-\sqrt{\eta}\alpha|
$$

Table of Contents

[Backgrounds](#page-2-0)

- **[Concatenated Bell-state measurement](#page-3-0)**
- [Quantum repeater](#page-12-0)
- [Coherent-state qubits](#page-16-0)

[Theoretical results](#page-19-0)

- [Bell-state measurement of coherent-state qubits in lossy environment](#page-20-0)
- [Parity encoding using coherent-state qubits](#page-27-0)
- Naïve Bell-state measurement scheme
- [Bell-state measurement scheme with optimized cost](#page-33-0)
- [Probabilities of specific measurement results](#page-45-0)

[Numerical calculation](#page-49-0)

- [Methods for Monte-Carlo simulation](#page-50-0)
- [Simulation results](#page-51-0)

[Implementation of the scheme](#page-54-0)

 Ω

メロトメ 倒 トメ ミトメ 毛

Photon loss model

- Considering photon-loss model by
	- the Master equation under the Born-Markov approximation with the zero-temperature,

$$
\frac{\partial \rho}{\partial \tau} = \gamma \sum_{i=1}^{N} \left(\hat{a}_{i} \rho \hat{a}_{i}^{\dagger} - \frac{1}{2} \hat{a}_{i}^{\dagger} \hat{a}_{i} \rho - \frac{1}{2} \rho \hat{a}_{i}^{\dagger} \hat{a}_{i} \right)
$$

or equivalently beam splitter model where the system is mixed with vacuum state by beam splitter, $(\eta = e^{-\gamma \tau/2})$

$$
\begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix} \rightarrow \begin{pmatrix} \hat{a}' \\ \hat{b}' \end{pmatrix} = \begin{pmatrix} \sqrt{\eta} & -\sqrt{1-\eta} \\ \sqrt{1-\eta} & \sqrt{\eta} \end{pmatrix} \begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix}.
$$

• Basis states of coherent-state qubit and their cross term transform as:

$$
|\alpha\rangle\!\langle \alpha| \to |\sqrt{\eta}\alpha\rangle\!\langle \sqrt{\eta}\alpha|\,,\quad |\alpha\rangle\,\langle -\alpha| \to e^{-2\left(1-\sqrt{\eta}^2\right)|\alpha|^2}\,|\sqrt{\eta}\alpha\rangle\,\langle -\sqrt{\eta}\alpha|\,,
$$

where η is the survival rate of photons.

Ref) S. M. Barnett & P. M. Radmore, Methods in Theoretical Quantum Optics, Clarendon Press (1997).

 Ω

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶

Modified Bell-state measurement scheme Let

- $\bullet \{\Pi_x : x \in \{0, 1, 2\}\}\colon$ orthogonal projectors s.t.
	- $\Pi_0 := |0_F\rangle\langle 0_F|$ $\Pi_1 := \sum_{n:\text{odd}} |n_F\rangle\langle n_F|$ $\Pi_2 := \sum_{n\neq 0:\text{even}} |n_\text{F}\rangle\langle n_\text{F}|$

 $(|n_F\rangle$: a Fock state with *n* photon numbers)

 \bullet $\Pi_{x,y} := \Pi_x \otimes \Pi_y$ where $x, y \in \{0,1,2\}$

 \bullet Λ_n : Photon loss channel with survival rate η

$$
\mathsf{A}_{\eta_1,\eta_2}:=\mathsf{A}_{\eta_1}\otimes \mathsf{A}_{\eta_2}
$$

 \bullet \mathcal{U}_{BS} : Unitary channel corresponding to a beam splitter

K ロ ト K 御 ト K ミ ト K ミ

POVM elements of Bell-state measurement in lossy environment

Positive-operator valued measure (POVM) elements $\{M_{x,y}\}_{x,y}$ where $x, y \in \{0, 1, 2\}$ are defined as

$$
M_{x,y} := \left(\mathcal{U}_{BS} \circ \Lambda_{\eta_1,\eta_2}\right)^{\dagger} \left(\Pi_{x,y}\right),
$$

Then

$$
\mathsf{Pr}(x, y | \rho) = \mathsf{Tr} \left[\Pi_{x, y} \left(\mathcal{U}_{BS} \circ \Lambda_{\eta_1, \eta_2} \right) (\rho) \right] = \mathsf{Tr} \left(M_{x, y} \rho \right)
$$

 $\sqrt{2}$

Modified Bell-state measurement scheme (cont.)

Assuming preceding photon loss model, matrix elements of each POVM element $M_{x,y}$ is calculated as:

$$
\langle \phi_{\pm} | M_{x,y} | \phi_{\pm} \rangle = c_{\pm} \left[1 \pm (-1)^{x+y} e^{-2(2-\eta_1-\eta_2)|\alpha|^2} \right] f_x(\eta_+) f_y(\eta_-)
$$

$$
\langle \psi_{\pm} | M_{x,y} | \psi_{\pm} \rangle = c_{\pm} \left[1 \pm (-1)^{x+y} e^{-2(2-\eta_1-\eta_2)|\alpha|^2} \right] f_x(\eta_-) f_y(\eta_+)
$$

$$
\langle \phi_{\pm} | M_{x,y} | \psi_{\pm} \rangle = c_{\pm} \left[\pm (-1)^{x+y} e^{-2(1-\eta_1)|\alpha|^2} + e^{-2(1-\eta_2)|\alpha|^2} \right]
$$

$$
\times f_x(\sqrt{\eta_+ \eta_-}) f_y(\sqrt{\eta_+ \eta_-})
$$

$$
\langle \phi_{+} | M_{x,y} | \psi_{-} \rangle = \langle \psi_{+} | M_{x,y} | \psi_{-} \rangle = \langle \phi_{\pm} | M_{x,y} | \psi_{\mp} \rangle = 0
$$

where

$$
c_{\pm}:=\frac{1}{1\pm \mathrm{e}^{-4|\alpha|^2}},\quad f_i(\eta):=\begin{cases} 1 & \text{if $i=0$}\\ \sinh\left(\eta|\alpha|^2\right) & \text{if $i=1$}\,,\quad \eta_{\pm}:=\frac{\left(\sqrt{\eta_1}\pm\sqrt{\eta_2}\right)^2}{2}\\ \cosh\left(\eta|\alpha|^2\right)-1 & \text{if $i=2$}\end{cases}
$$

 Ω

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow \leftarrow \Box \rightarrow

Modified Bell-state measurement scheme (cont.)

From the measurement result (x, y) , assuming equal prior probability of each Bell state, choose a Bell state $|B\rangle \in \mathcal{B} = \{|\phi_+\rangle, |\phi_-\rangle, |\psi_+\rangle, |\psi_-\rangle\}$ which maximize

$$
\mathbf{Pr}(B | x, y) = \frac{\mathbf{Pr}(x, y | B) \mathbf{Pr}(B)}{\sum_{|B' \rangle \in \mathcal{B}} \mathbf{Pr}(x, y | B) \mathbf{Pr}(B)} \propto \mathbf{Pr}(x, y | B) = \langle B | M_{x,y} | B \rangle
$$

\n
$$
\Rightarrow |B\rangle = \operatorname{argmax}_{|B'\rangle \in \mathcal{B}} \langle B' | M_{x,y} | B' \rangle
$$

∢ ロ ▶ - ィ 印 ▶ - ィ

Modified Bell-state measurement scheme (cont.)

From the measurement result (x, y) , assuming equal prior probability of each Bell state, choose a Bell state $|B\rangle \in \mathcal{B} = \{|\phi_+\rangle, |\phi_-\rangle, |\psi_+\rangle, |\psi_-\rangle\}$ which maximize

$$
\mathbf{Pr}(B | x, y) = \frac{\mathbf{Pr}(x, y | B) \mathbf{Pr}(B)}{\sum_{|B' \rangle \in \mathcal{B}} \mathbf{Pr}(x, y | B) \mathbf{Pr}(B)} \propto \mathbf{Pr}(x, y | B) = \langle B | M_{x,y} | B \rangle
$$

\n
$$
\Rightarrow |B\rangle = \operatorname{argmax}_{|B'\rangle \in \mathcal{B}} \langle B' | M_{x,y} | B' \rangle
$$

By simple analysis, one can show the following result. $(\mathit{M}^{B}_{x,y}:=\bra{B}M_{x,y}\ket{B}$ for simplicity.)

$$
\begin{cases}\nM_{x,y}^{\phi_+ (\psi_+)} > M_{x,y}^{\phi_- (\psi_-)} \quad \text{if } x + y \colon \text{even} \\
M_{x,y}^{\phi_+ (\psi_+)} < M_{x,y}^{\phi_- (\psi_-)} \quad \text{if } x + y \colon \text{odd} \\
\end{cases}\n\qquad\n\begin{array}{c}\n\frac{x \setminus y}{\phi_-} & 0 & 1 \\
\frac{0}{\phi_+ / \psi_+} & \psi_-}{\phi_-} & \frac{\psi_+}{\phi_-} \\
\frac{1}{\phi_-} & \frac{\phi_+ / \psi_+}{\phi_-} & \frac{\psi_-}{\phi_+} \\
M_{x,y}^{\phi_+} < M_{x,y}^{\psi_+} & \text{if } x < y \\
M_{x,y}^{\phi_+} < M_{x,y}^{\psi_+} & \text{if } x < y \\
M_{x,y}^{\phi_+} & = M_{x,y}^{\psi_+} & \text{if } x = y\n\end{array}
$$

Success, failure, and error probs. of BSM

- Assume equal prior probs. for four Bell states.
- **Possible errors**
	- X error: Symbol flip $(\phi \leftrightarrow \psi)$
	- Z error: Sign flip $(+ \leftrightarrow -)$
	- Y error: Both symbol and sign flip
	- SND (or failure): Symbol is not determinable. $(x = y)$

 Ω

K ロ ▶ | K 同 ▶ | K ヨ ▶

Success, failure, and error probs. of BSM

- Assume equal prior probs. for four Bell states.
- **•** Possible errors
	- X error: Symbol flip $(\phi \leftrightarrow \psi)$
	- Z error: Sign flip $(+ \leftrightarrow -)$
	- Y error: Both symbol and sign flip
	- SND (or failure): Symbol is not determinable. $(x = y)$

Set $\eta_1 := \eta_0$, $\eta_2 := \eta_0 e^{-L_0/L_{\rm att}}$

- $L_0 = 1$ km and $L_{\text{att}} = 22$ km
- **Both systems suffer internal loss** with survival rate of η_0 .
- Photons of second system travel distance of L_0 .
- SND and 7 error are much more probable then X and Y errors

$$
\bullet \ \ p_X, p_Y \lessapprox 10^{-4}.
$$

Parity encoding using coherent-state qubits

Modified parity encoding for coherent-state qubits

$$
|0_L(1_L)\rangle := \left[N^{(m)}\left\{\left(|\alpha\rangle + |-\alpha\rangle\right)^{\otimes m} \pm \left(|\alpha\rangle - |-\alpha\rangle\right)^{\otimes m}\right\}\right]^{\otimes n}
$$

Basis of each level

- **•** Logical level $|0_L\rangle, |1_L\rangle \rightarrow |\Phi_+\rangle, |\Psi_+\rangle$
- **•** Block level $\vert \pm^{(m)} \rangle := \mathcal{N}^{(m)} \left\{ (\vert \alpha \rangle + \vert -\alpha \rangle)^{\otimes m} \pm (\vert \alpha \rangle - \vert -\alpha \rangle)^{\otimes m} \right\} \rightarrow \left\vert \phi_{\pm}^{(m)} \right\rangle, \left\vert \psi_{\pm}^{(m)} \right\rangle$
- **•** Physical level $|\pm\alpha\rangle \rightarrow |\phi_{+}\rangle, |\psi_{+}\rangle$

 Ω

メロトメ 倒 トメ ミトメ ミト

Parity encoding using coherent-state qubits (cont.)

Decomposition of Bell states

 \bullet Logical level \rightarrow Block level

$$
\left|\Phi_{+(-)}\right\rangle = N_2^{(n)} \sum_{j=\text{even(odd)}\leq n} \left(C_-^{(m)}\right)^j \left(C_+^{(m)}\right)^{n-j} \mathcal{P}\left[\left|\phi_-^{(m)}\right\rangle^{\otimes j} \left|\phi_+^{(m)}\right\rangle^{\otimes n-j}\right]
$$

$$
\left|\Psi_{+(-)}\right\rangle = N_2^{(n)} \sum_{j=\text{even(odd)}\leq n} \left(C_-^{(m)}\right)^j \left(C_+^{(m)}\right)^{n-j} \mathcal{P}\left[\left|\psi_-^{(m)}\right\rangle^{\otimes j} \left|\psi_+^{(m)}\right\rangle^{\otimes n-j}\right]
$$

where

$$
C_{\pm}^{(m)} = \sqrt{2} \left[1 \pm \left\{ \frac{\left(1 + e^{-2|\alpha|^2}\right)^m - \left(1 - e^{-2|\alpha|^2}\right)^m}{\left(1 + e^{-2|\alpha|^2}\right)^m + \left(1 - e^{-2|\alpha|^2}\right)^m} \right\}^2 \right]^{1/2}
$$

 \bullet Block level \rightarrow Physical level

$$
\left| \phi_{\pm}^{(m)} \right\rangle = N_{1\pm}^{(m)} \sum_{k = \text{even} \leq m} \mathcal{P} \left[|\psi_{\pm} \rangle^{\otimes k} |\phi_{\pm} \rangle^{\otimes m - k} \right]
$$

$$
\left| \psi_{\pm}^{(m)} \right\rangle = N_{1\pm}^{(m)} \sum_{k = \text{odd} \leq m} \mathcal{P} \left[|\psi_{\pm} \rangle^{\otimes k} |\phi_{\pm} \rangle^{\otimes m - k} \right]
$$

Naïve Bell-state measurement scheme

Logical level $(BSM₂)$

$$
\left|\Phi_{+(-)}\right\rangle = \mathsf{N}_{2}^{(n)}\sum_{j=\mathrm{even}(\mathrm{odd})\leq n}\left(\mathsf{C}_{-}^{(m)}\right)^{j}\left(\mathsf{C}_{+}^{(m)}\right)^{n-j}\mathcal{P}\left[\left|\phi_{-}^{(m)}\right\rangle^{\otimes j}\left|\phi_{+}^{(m)}\right\rangle^{\otimes n-j}\right] \\ \left|\Psi_{+(-)}\right\rangle = \mathsf{N}_{2}^{(n)}\sum_{j=\mathrm{even}(\mathrm{odd})\leq n}\left(\mathsf{C}_{-}^{(m)}\right)^{j}\left(\mathsf{C}_{+}^{(m)}\right)^{n-j}\mathcal{P}\left[\left|\psi_{-}^{(m)}\right\rangle^{\otimes j}\left|\psi_{+}^{(m)}\right\rangle^{\otimes n-j}\right]
$$

- Symbol: by majority vote of symbols of block Bell states
- Sign: by parity of the number of block Bell states with minus sign

 Ω

K ロ ▶ K 御 ▶ K ミ ▶

Naïve Bell-state measurement scheme

Logical level $(BSM₂)$

$$
\left|\Phi_{+(-)}\right\rangle = \mathsf{N}_{2}^{(n)}\sum_{j=\text{even(odd)}\leq n}\left(\mathsf{C}_{-}^{(m)}\right)^{j}\left(\mathsf{C}_{+}^{(m)}\right)^{n-j}\mathcal{P}\left[\left|\phi_{-}^{(m)}\right\rangle^{\otimes j}\left|\phi_{+}^{(m)}\right\rangle^{\otimes n-j}\right] \\ \left|\Psi_{+(-)}\right\rangle = \mathsf{N}_{2}^{(n)}\sum_{j=\text{even(odd)}\leq n}\left(\mathsf{C}_{-}^{(m)}\right)^{j}\left(\mathsf{C}_{+}^{(m)}\right)^{n-j}\mathcal{P}\left[\left|\psi_{-}^{(m)}\right\rangle^{\otimes j}\left|\psi_{+}^{(m)}\right\rangle^{\otimes n-j}\right]
$$

Symbol: by majority vote of symbols of block Bell states

• Sign: by parity of the number of block Bell states with minus sign Block level $(BSM₁)$

$$
\left|\phi_{\pm}^{(m)}\right\rangle =\mathsf{N}_{1\pm}^{(m)}\sum_{\mathsf{k}=\text{even}\leq m}\mathcal{P}\left[|\psi_{\pm}\rangle^{\otimes\mathsf{k}}\,|\phi_{\pm}\rangle^{\otimes m-\mathsf{k}}\right] \\ \left|\psi_{\pm}^{(m)}\right\rangle =\mathsf{N}_{1\pm}^{(m)}\sum_{\mathsf{k}=\text{odd}\leq m}\mathcal{P}\left[|\psi_{\pm}\rangle^{\otimes\mathsf{k}}\,|\phi_{\pm}\rangle^{\otimes m-\mathsf{k}}\right]
$$

 \bullet Symbol: by parity of the number of physical Bell states with ψ symbol • Sign: by majority vote of signs of physical Bell s[tat](#page-29-0)[es](#page-31-0)

Naïve Bell-state measurement scheme (cont.)

Physical level $(BSM₀)$

- Sign: Always determinable.
- Symbol: Not determinable if $x = y$.

 $A \Box B$ $A \Box B$ $A \Box B$

Physical level $(BSM₀)$

- Sign: Always determinable.
- Symbol: Not determinable if $x = y$.

Overall

- \bullet Sign of a Bell state of each level: Always determinable, if m is an odd number.
	- \bullet Block level (BSM₁): Majority vote of signs of BSM₀ always gives result, if m is an odd number.
	- Logical level $(BSM₂)$: The number of $BSM₁$ giving minus sign is well-defined.
- Symbol of a Bell state of each level: Not always determinable. If symbol is not determinable, it is called 'SND' for physical/block level, and 'failure' for logical level.
	- \bullet Block level (BSM₁): If at least one BSM₀ is SND, we cannot determine the parity of the number of BSM₀ giving ψ symbol, so the BSM₁ is also SND.
	- Logical level $(BSM₂)$: We can perform majority vote of symbols of $BSM₁$ excluding SND BSM₁. If all BSM₁s are SND , or majority vote fails, the BSM₂ is SND. メロトメ 伊 トメ ミトメ ミト 299

Bell-state measurement scheme with optimized cost

- Cost of concatenated BSM: Number of physical BSMs for one logical BSM.
- Naïve Bell-state measurement scheme have cost nm. How to optimize the cost?

 \cap \cap

Logical level $(BSM₂)$

- **•** Scheme
	- \bullet Perform BSM₁s until we have *i* BSM₁s which is not SND.
	- \bullet After that, perform BSM_{1, sign} for left block states, which determine only sign of a block Bell-state.

1	2	•	5	5	5	0	0	0	0
8.5	5	0.000	0.000	0.000	0.000				

 Ω

∢ ロ ▶ - ィ 印 ▶ - ィ

Logical level $(BSM₂)$

- Scheme
	- \bullet Perform BSM₁s until we have *i* BSM₁s which is not SND.
	- \bullet After that, perform BSM_{1, sign} for left block states, which determine only sign of a block Bell-state.

1	2	•	5	$f+1$	•	•	f
8.5H ₁ , \overline{f} <math< td=""></math<>							

- Interpreting the results
	- Symbol: by majority vote among *not-SND BSM₁s.*
	- Sign: by parity of the number of block Bell states with minus sign determined by BSM_1s and $BSM_1_{sign}s$.

 Ω

メロトメ 倒 トメ ミトメ 毛

Logical level $(BSM₂)$

- Scheme
	- \bullet Perform BSM₁s until we have *i* BSM₁s which is not SND.
	- \bullet After that, perform BSM_{1, sign} for left block states, which determine only sign of a block Bell-state.

1	2	•	5	$f+1$	•	6	f
8.3H ₁ , \overline{f} <math< td=""></math<>							

- Interpreting the results
	- Symbol: by majority vote among *not-SND BSM₁₅.*
	- Sign: by parity of the number of block Bell states with minus sign determined by BSM_1s and $BSM_1_{sign}s$.
- Since we expect X error (symbol flip error) is much less likely than Z error (sign flip error), majority vote among only *not-SND BSM₁₅ would be* enough.

 Ω

イロト イ御 トイ ヨ トイ ヨ

- \bullet d: Index of BSM₀
	- \rightarrow Enough to determine the sign of block Bell state.

$$
\begin{array}{|c|c|c|c|c|c|c|c|} \hline +&+&-&+&+&+&-\\ \hline /&2&3&4&1.5&6&7\\ \hline \end{array}
$$

 Ω

- \bullet d: Index of BSM₀
	- \rightarrow Enough to determine the sign of block Bell state.
- \bullet f: Index of first SND BSM₀, if exists.

 Ω

∢ ロ ▶ - ィ 印 ▶ - ィ

- \bullet d: Index of BSM₀
	- \rightarrow Enough to determine the sign of block Bell state.
- \bullet f: Index of first SND BSM₀, if exists.

4 0 F

- \bullet d: Index of BSM₀
	- \rightarrow Enough to determine the sign of block Bell state.
- \bullet f: Index of first SND BSM₀, if exists.

• Sign: Determined by signs of the first d BSM₀s for all cases.

4 0 8 1

- \bullet d: Index of BSM₀
	- \rightarrow Enough to determine the sign of block Bell state.
- \bullet f: Index of first SND BSM₀, if exists.

- Sign: Determined by signs of the first d BSM₀s for all cases.
- Symbol:
	- Case 1: Determined by the parity of the number of states with symbol ψ .
	- Case 2 and 3: SND, since the existence of SND BSM $₀$ makes</sub> the parity of the number of ψ states ambiguous.

K ロ ▶ K 何 ▶ K K

Bell-state measurement scheme with optimized cost (cont.)

Block level measuring only sign ($BSM_{1,sign}$)

 Ω

Bell-state measurement scheme with optimized cost (cont.)

Block level measuring only sign $(BSM_{1,sign})$

- Sign: Determined by signs of the first d $BSM₀s$.
- Symbol: No need to be determined

Bell-state measurement scheme with optimized cost (cont.)

Block level measuring only sign ($BSM_{1,sign}$)

- Sign: Determined by signs of the first d $BSM₀s$.
- Symbol: No need to be determined

Physical level (BSM_0)

- Currently, BSM_0 and $BSM_{0,svmbol}$ are same.
- \bullet BSM_{0,sign}
	- Only need to determine the parity of $x + y$.
	- Need one PNPD instead of two.
	- \bullet Assume half amount of contribution to cost than full BSM $_0$.

Probabilities of specific measurement results

Probabilities of single block Bell-state measurement results

Want: $Pr(x, y | B_1)$, where $x, y \in \{0, 1, 2, 3\}^m$ and $|B_1\rangle \in \mathcal{B}_1 := \{ \left| \phi_{\pm}^{(m)} \right\rangle, \left| \psi_{\pm}^{(m)} \right\rangle \}$

• Remind:

$$
\begin{array}{c} \Pr\left(\mathbf{x},\mathbf{y}\mid B_{0}\right)=\left\langle B_{0}\right|\left.M_{\mathbf{x},\mathbf{y}}\right|B_{0}\right\rangle \quad \text{for } B_{0}\in\mathcal{B}_{0}=\left\{ \left|\phi_{\pm}\right\rangle ,\left|\psi_{\pm}\right\rangle \right\} \\ \left|\phi_{\pm}^{(m)}\right\rangle =\mathsf{N}_{1\pm}^{(m)}\sum_{k=\text{even}\leq m}\mathcal{P}\left[\left|\psi_{\pm}\right\rangle ^{\otimes k}\left|\phi_{\pm}\right\rangle ^{\otimes m-k}\right] \\ \left|\psi_{\pm}^{(m)}\right\rangle =\mathsf{N}_{1\pm}^{(m)}\sum_{k=\text{odd}\leq m}\mathcal{P}\left[\left|\psi_{\pm}\right\rangle ^{\otimes k}\left|\phi_{\pm}\right\rangle ^{\otimes m-k}\right] \end{array}
$$

$$
\begin{aligned}\n\mathbf{P} \mathbf{F} \left(\mathbf{x}, \mathbf{y} \, \middle| \, \phi_{\pm}^{(m)} \right), \\
\mathbf{P} \mathbf{F} \left(\mathbf{x}, \mathbf{y} \, \middle| \, \phi_{\pm}^{(m)} \right) &= \left\langle \phi_{\pm}^{(m)} \middle| \, \bigotimes_{i=1}^{m} M_{x_i, y_i} \, \middle| \, \phi_{\pm}^{(m)} \right\rangle \\
&= \left(N_{1\pm}^{(m)} \right)^2 \sum_{k, k' = \text{even} \le m} \sum_{\otimes_{i=1}^{m} | P_i \rangle \in \text{Perm}} \sum_{\substack{[\psi_{\pm} \rangle \otimes k \, \middle| \, \phi_{\pm} \rangle \otimes m - k' \\ \otimes_{i=1}^{m} | P_i' \rangle \in \text{Perm}} \left[\left| \psi_{\pm} \right\rangle^{\otimes k'} \left| \phi_{\pm} \right\rangle^{\otimes m - k'} \right] \\
&:= \left(N_{1\pm}^{(m)} \right)^2 \sum_{k, k' = \text{even} \le m} g_{\pm}(m, k, k', \mathbf{x}, \mathbf{y}) \\
\mathbf{P} \left(\mathbf{P} \mathbf{P} \right) \mathbf{P} \left(\mathbf{P} \right) &= \left(N_{1\pm}^{(m)} \right)^2 \sum_{k, k' = \text{even} \le m} g_{\pm}(m, k, k', \mathbf{x}, \mathbf{y}) \\
&= \left(N_{1\pm}^{(m)} \right)^2 \sum_{k, k' = \text{even} \le m} g_{\pm}(m, k, k', \mathbf{x}, \mathbf{y}) \\
&= \left(N_{1\pm}^{(m)} \right)^2 \sum_{k, k' = \text{even} \le m} g_{\pm}(m, k, k', \mathbf{x}, \mathbf{y}) \\
&= \left(N_{1\pm}^{(m)} \right)^2 \sum_{k, k' = \text{even} \le m} g_{\pm}(m, k, k', \mathbf{x}, \mathbf{y}) \\
&= \left(N_{1\pm}^{(m)} \right)^2 \sum_{k, k' = \text{even} \le m} g_{\pm}(m, k, k', \mathbf{x}, \mathbf{y}) \\
&= \left(N_{1\pm}^{(m)} \
$$

 \cap \cap

Probabilities of specific measurement results (cont.)

Probabilities of single block Bell-state measurement results (cont.)

• Recurrence relation of function g (omit x and y)

$$
g_{\pm}(m, k, k') = g_{\pm}(m-1, k, k')M_{11}^{(m)\pm} + [g_{\pm}(m-1, k, k'-1) + g_{\pm}(m-1, k-1, k')]M_{12}^{(m)\pm} + g_{\pm}(m-1, k-1, k'-1)M_{22}^{(m)\pm}
$$

where

$$
M_{11}^{(i)\pm} := \langle \phi_{\pm} | \hat{M}_{x_i, y_i} | \phi_{\pm} \rangle, \ M_{12}^{(i)\pm} := \langle \phi_{\pm} | \hat{M}_{x_i, y_i} | \psi_{\pm} \rangle, \ M_{22}^{(i)\pm} := \langle \psi_{\pm} | \hat{M}_{x_i, y_i} | \psi_{\pm} \rangle.
$$

• Define
$$
H_m^{\pm}
$$

$$
\mathbf{H}_{m}^{\pm} := \begin{pmatrix} \sum_{k,k':even\leq m} g_{\pm}(m,k,k') & \sum_{k':even\leq m} g_{\pm}(m,k,k') \\ \sum_{k':odd\leq m} g_{\pm}(m,k,k') & \sum_{k':odd\leq m} g_{\pm}(m,k,k'). \\ k':even\leq m \end{pmatrix}
$$

Recurrence relation of $\mathsf{\tilde{H}}_m^\pm:=\left(H_{m,11}^\pm,H_{m,12}^\pm,H_{m,21}^\pm,H_{m,22}^\pm\right)$

$$
\tilde{\mathbf{H}}_{m}^{\pm} = \begin{pmatrix} M_{11}^{(m)\pm} & M_{12}^{(m)\pm} & M_{12}^{(m)\pm} & M_{22}^{(m)\pm} \\ M_{11}^{(m)\pm} & M_{11}^{(m)\pm} & M_{22}^{(m)\pm} & M_{12}^{(m)\pm} \\ M_{12}^{(m)\pm} & M_{22}^{(m)\pm} & M_{11}^{(m)\pm} & M_{12}^{(m)\pm} \\ M_{22}^{(m)\pm} & M_{12}^{(m)\pm} & M_{12}^{(m)\pm} & M_{11}^{(m)\pm} \end{pmatrix} \tilde{\mathbf{H}}_{m-1}^{\pm} := \tilde{\mathbf{M}}_{m}^{\pm} \tilde{\mathbf{H}}_{m-1}^{\pm}
$$

$$
\longrightarrow \tilde{\mathbf{M}}_{m}^{\pm} \cdots \tilde{\mathbf{M}}_{1}^{\pm} (1, 0, 0, 0, 0)^{T}
$$

Probabilities of specific measurement results (cont.)

Simple matrix-form expression of $Pr(x, y | B_1)$

$$
\begin{aligned} &\text{Pr}\left(\mathbf{x},\mathbf{y}\left|\phi_{\pm}^{(m)}\right.\right)=\left(N_{1\pm}^{(m)}\right)^{2}\tilde{H}_{m1}^{\pm}(\mathbf{x},\mathbf{y}),\\ &\text{Pr}\left(\mathbf{x},\mathbf{y}\left|\psi_{\pm}^{(m)}\right.\right)=\left(N_{1\pm}^{(m)}\right)^{2}\tilde{H}_{m4}^{\pm}(\mathbf{x},\mathbf{y}), \end{aligned}
$$

where

$$
\tilde{\mathbf{H}}_m^{\pm}(\mathbf{x}, \mathbf{y}) = \tilde{\mathbf{M}}_m^{\pm}(\mathbf{x}, \mathbf{y}) \cdots \tilde{\mathbf{M}}_1(\mathbf{x}, \mathbf{y})(1, 0, 0, 0)^T
$$

with

$$
\tilde{\mathbf{M}}_{i}^{\pm}(\mathbf{x},\mathbf{y}) = \begin{pmatrix} M_{11}^{(i)}\pm & M_{12}^{(i)}\pm & M_{13}^{(i)}\pm & M_{22}^{(i)}\pm \\ M_{12}^{(i)}\pm & M_{11}^{(i)}\pm & M_{22}^{(i)}\pm & M_{10}^{(i)}\pm \\ M_{12}^{(i)}\pm & M_{22}^{(i)}\pm & M_{11}^{(i)}\pm & M_{12}^{(i)}\pm \\ M_{22}^{(i)}\pm & M_{12}^{(i)}\pm & M_{12}^{(i)}\pm & M_{11}^{(i)}\pm \end{pmatrix}
$$

and

$$
\mathcal{M}_{11}^{(i)\pm} := \langle \phi_{\pm} | \hat{\mathcal{M}}_{x_i, y_i} | \phi_{\pm} \rangle \, , \, \mathcal{M}_{12}^{(i)\pm} := \langle \phi_{\pm} | \hat{\mathcal{M}}_{x_i, y_i} | \psi_{\pm} \rangle \, , \, \mathcal{M}_{22}^{(i)\pm} := \langle \psi_{\pm} | \hat{\mathcal{M}}_{x_i, y_i} | \psi_{\pm} \rangle \, .
$$

 Ω

イロト イ御 トイ ヨ トイ ヨ

Probabilities of specific measurement results (cont.)

Probabilities of logical Bell-state measurement results (cont.)

Want: $\mathsf{Pr}\left(\mathsf{X},\mathsf{Y}\,|\,B_2\right)$, where $\mathsf{X},\mathsf{Y}\in\{0,1,2,3\}^{n\times m}$ and $|B_2\rangle \in \mathcal{B}_2 := \{|\Phi_+\rangle, |\Psi_+\rangle\}$

Simple matrix-form expression of $Pr(X, Y | B_2)$

$$
\begin{aligned} &\mathsf{Pr}\left(\mathbf{X},\mathbf{Y}\,|\,\Phi_{+}\right)=\left(N_{2}^{(n)}\right)^{2}\tilde{H}_{n1}(\mathbf{X},\mathbf{Y}),\\ &\mathsf{Pr}\left(\mathbf{X},\mathbf{Y}\,|\,\Phi_{-}\right)=\left(N_{2}^{(n)}\right)^{2}\tilde{H}_{n2}(\mathbf{X},\mathbf{Y}), \end{aligned}
$$

where

$$
\tilde{\mathbf{H}}_n(\mathbf{X}, \mathbf{Y}) = \tilde{\mathbf{M}}_n(\mathbf{X}, \mathbf{Y}) \cdots \tilde{\mathbf{M}}_1(\mathbf{X}, \mathbf{Y}) \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \text{with} \quad \tilde{\mathbf{M}}_i(\mathbf{X}, \mathbf{Y}) = \begin{pmatrix} M_{11}^{(i)} & M_{22}^{(i)} \\ M_{22}^{(i)} & M_{11}^{(i)} \end{pmatrix}
$$

and

$$
M_{11}^{(i)}:=\left(\mathit{C}^{(m)}_+\right)^2\left\langle \phi_+^{(m)}\right|\hat{M}_B^{(i)}\left|\phi_+^{(m)}\right\rangle,\ \ M_{22}^{(i)}:=\left(\mathit{C}^{(m)}_-\right)^2\left\langle \phi_-^{(m)}\right|\hat{M}_B^{(i)}\left|\phi_-^{(m)}\right\rangle,\quad\text{and}\quad \hat{M}_B^{(i)}=\bigotimes_{j=1}^m\hat{M}_{X_{ij},Y_{ij}}
$$

 Ω

メロメメ 倒 メメ ミメメ 毛

,

Table of Contents

[Backgrounds](#page-2-0)

- **[Concatenated Bell-state measurement](#page-3-0)**
- [Quantum repeater](#page-12-0)
- [Coherent-state qubits](#page-16-0)

² [Theoretical results](#page-19-0)

- [Bell-state measurement of coherent-state qubits in lossy environment](#page-20-0)
- [Parity encoding using coherent-state qubits](#page-27-0)
- [Na¨ıve Bell-state measurement scheme](#page-29-0)
- [Bell-state measurement scheme with optimized cost](#page-33-0)
- [Probabilities of specific measurement results](#page-45-0)

³ [Numerical calculation](#page-49-0)

- [Methods for Monte-Carlo simulation](#page-50-0)
- **[Simulation results](#page-51-0)**

[Implementation of the scheme](#page-54-0)

 Ω

メロトメ 倒 トメ ミトメ 毛

Methods for Monte-Carlo simulation

- Parameters: $n, m, \alpha, \eta_1, \eta_2, j$
- We tried Monte-Carlo simulation, which randomly samples results and counts the number of success or error.

Randomly sampling measurement results

- Assume a prior distribution for four logical Bell states $B_2 = {\Phi_+, \Psi_+}$.
- Need to sample nm BSM₀ measurement results, each of which gives (x, y) where $x, y \in \{0, 1, 2\} \longrightarrow x_{11}, y_{11}, \cdots, x_{nm}, y_{nm}$
- \bullet Sample each BSM₀ measurement result one by one with conditional probability where $B_2 \in \mathcal{B}_2$:

$$
\textbf{Pr}\left(x_{pq}, y_{pq} \,|\, x_{11}, y_{11}, \cdots, x_{p,q-1}, y_{p,q-1}; B_2\right) \propto \textbf{Pr}\left(x_{11}, y_{11}, \cdots, x_{p,q}, y_{p,q} \,|\, B_2\right)
$$

 \bullet The conditional probability can be expressed with H we used for matrix-form expression of $Pr(X, Y | B_2)$ and $Pr(x, y | B_1)$.

 Ω

メロトメ 倒 トメ ヨ トメ ヨト

Simulation results

Success probability of single logical CBSM against cost

 \bullet $n_1 = n_2 = n$. Optimization of α is taken in range of $\alpha \leq 2$

 Ω

∢ ロ ▶ - ∢ 何 ▶ - ∢ ヨ

Simulation results (cont.)

Success probability of single logical CBSM against α

 α a = 1.2 (left), α = 1.8 (right).

•
$$
\eta_1 = \eta_2 = \eta = 0.99.
$$

 \bullet α should be large enough to make efficient CBSM possible.

 4 ロ \rightarrow 4 \overline{m} \rightarrow \rightarrow \overline{m}

 QQ

Simulation results (cont.)

Key generation rate R for quantum key distribution

E Effective total cost optimizing for α , L_0 , and *i*, when $L = 1000$ km.

- Rt_0 optimizing for α and j, when $L_0 = 0.8$ km and $L = 1000$ km.
- Effective total cost $C_{tot} = C_{BSM} \left(\frac{L}{L_0}\right)/(R t_0)$
- Optimal at $n = 3$, $m = 33$, $\alpha = 1.95$, $L_0 = 0.75$ km, $j = 1$. $C_{tot} = (1.00 \pm 0.01) \times 10^5$.

 Ω

K ロ ▶ K 何 ▶ K ヨ ▶ K

Table of Contents

[Backgrounds](#page-2-0)

- **[Concatenated Bell-state measurement](#page-3-0)**
- [Quantum repeater](#page-12-0)
- [Coherent-state qubits](#page-16-0)

² [Theoretical results](#page-19-0)

- [Bell-state measurement of coherent-state qubits in lossy environment](#page-20-0)
- [Parity encoding using coherent-state qubits](#page-27-0)
- [Na¨ıve Bell-state measurement scheme](#page-29-0)
- [Bell-state measurement scheme with optimized cost](#page-33-0)
- [Probabilities of specific measurement results](#page-45-0)

[Numerical calculation](#page-49-0)

- **[Methods for Monte-Carlo simulation](#page-50-0)**
- [Simulation results](#page-51-0)

⁴ [Implementation of the scheme](#page-54-0)

 Ω

メロトメ 倒 トメ ミトメ 毛

Implementation of the scheme

Preparation of $|0_L\rangle$ and $|1_L\rangle$

 Ω

K ロ ▶ K 何 ▶ K

Implementation of the scheme

CNOT gate

K ロ ▶ | x 母 ▶ | x ヨ ▶

 299

Table of Contents

[Backgrounds](#page-2-0)

- **[Concatenated Bell-state measurement](#page-3-0)**
- [Quantum repeater](#page-12-0)
- [Coherent-state qubits](#page-16-0)

² [Theoretical results](#page-19-0)

- [Bell-state measurement of coherent-state qubits in lossy environment](#page-20-0)
- [Parity encoding using coherent-state qubits](#page-27-0)
- [Na¨ıve Bell-state measurement scheme](#page-29-0)
- [Bell-state measurement scheme with optimized cost](#page-33-0)
- [Probabilities of specific measurement results](#page-45-0)

[Numerical calculation](#page-49-0)

- **[Methods for Monte-Carlo simulation](#page-50-0)**
- [Simulation results](#page-51-0)

[Implementation of the scheme](#page-54-0)

[Conclusion](#page-57-0)

 Ω

メロトメ 倒 トメ ミトメ 毛

Conclusion

- We investigated Bell-state measurement scheme with coherent-state qubits in lossy environment.
- We suggested parity encoding scheme using coherent-state qubits and concatenated Bell-state measurement (CBSM) scheme with optimized cost.
- We got analytic expressions of probabilities for getting each specific measurement results, and then performed Monte-Carlo simulations for success probabilities and error rates.
- Numerical calculation shows that CBSM with coherent-state can achieve high success probability and high key generation rate $Rt_0 \approx 0.8$. For that to be possible, α should be large enough ($\alpha \gtrsim 1.2$) and $m \gtrsim 35$, while *n* does not affect the performance much.
- However, suggested CBSM protocol with coherent state is not yet good enough compared to CBSM with polarization qubit in S.-W. Lee et al. (2019).
- Future works will include developing BSM_{0.symbol}, simulating for $j \ge 2$, simulating for larger m , and methods to physically realize this CBSM scheme.

 QQ

4 ロ) 4 個) 4 差) 4 差)

Thank you for your attention!

Seokhyung Lee and Hyunseok Jeong (SQuiS) [Concatenated BSM with Coherent States](#page-0-0) June 1, 2020 40/40

 Ω

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow \leftarrow \Box \rightarrow