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Concatenated Bell-state measurement

Parity encoding

|0L〉 :=
∣∣∣+(m)

〉⊗n
, |1L〉 :=

∣∣∣−(m)
〉⊗n

where ∣∣∣±(m)
〉

:= |H〉⊗m ± |V 〉⊗m

Physical level: |±〉 :=
∣∣±(1)

〉
= |H〉 ± |V 〉 → Concatenate to form a block

level

Block level:
∣∣±(m)

〉
→ Concatenate to form a logical level

Logical Level: |0L〉, |1L〉
Generalization of Shor’s 9-qubit code (n = 3, m = 3 case)

Ref)
F. Ewert, M. Bergmann, and P. van Loock, Ultrafast Long-Distance Quantum Communication with Static
Linear Optics, Phys. Rev. Lett. 177, 210510 (2016).

S.-W. Lee, T. C. Ralph, and H. Jeong, Fundamental building block for all-optical scalable quantum networks,

Phys. Rev. A 100, 052303 (2019).
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Concatenated Bell-state measurement (cont.)

Bell states

Logical level

|Φ±〉 := |0L〉 |0L〉 ± |1L〉 |1L〉
|Ψ±〉 := |0L〉 |1L〉 ± |1L〉 |0L〉

Block level ∣∣∣φ(m)
±

〉
:=
∣∣∣+(m)

〉 ∣∣∣+(m)
〉
±
∣∣∣−(m)

〉 ∣∣∣−(m)
〉

∣∣∣ψ(m)
±

〉
:=
∣∣∣+(m)

〉 ∣∣∣−(m)
〉
±
∣∣∣−(m)

〉 ∣∣∣+(m)
〉

Physical level

|φ±〉 :=
∣∣∣φ(1)
±

〉
= |+〉 |+〉 ± |−〉 |−〉

|ψ±〉 :=
∣∣∣ψ(1)
±

〉
= |+〉 |−〉 ± |−〉 |+〉
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Concatenated Bell-state measurement (cont.)

Decomposition of Bell states∣∣Φ+(−)

〉
=

1
√

2n−1

∑
j=even(odd)≤n

P
[∣∣∣φ(m)
−

〉⊗j ∣∣∣φ(m)
+

〉⊗n−j
]

∣∣Ψ+(−)

〉
=

1
√

2n−1

∑
j=even(odd)≤n

P
[∣∣∣ψ(m)
−

〉⊗j ∣∣∣ψ(m)
+

〉⊗n−j
]

∣∣∣φ(m)
±

〉
=

1
√

2m−1

∑
k=even≤m

P
[
|ψ±〉⊗k |φ±〉⊗m−k

]
∣∣∣ψ(m)
±

〉
=

1
√

2m−1

∑
k=odd≤m

P
[
|ψ±〉⊗k |φ±〉⊗m−k

]
(P[·]: summation of all possible permutations of input tensor products.)

Logical Bell state

n block Bell states

Symbol: Symbol of block states
Sign: Parity of number of (-) sign
block states

Block Bell state

m physical Bell states

Symbol: Parity of number of ψ
physical states
Sign: Sign of physical states
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Concatenated Bell-state measurement (cont).

Decomposition of Bell states (cont.)

Logical Bell state: n block Bell states

Symbol: Symbol of block states
Sign: Parity of number of (-) sign block states

Block Bell state: m physical Bell states

Symbol: Parity of number of ψ physical states
Sign: Sign of physical states

Fault-tolerance

Z errors (sign flip errors): Corrected at block level.

X errors (symbol flip errors): Corrected at logical level.
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Quantum repeater

Figure: from S.-W. Lee et al. (2019)

Photons travelling long-range distance have exponentially decreasing
probability to survive.

Quantum repeater enables long-range quantum communication using an
error-correction scheme in repeater stations.

In each station, a Bell state is prepared and the input state is teleported to
the outgoing state with error correction.
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Quantum repeater (cont.)

Quantifying quantum repeater
Ref) S. Muralidharan, J. Kim, N, Lütkenhaus, M. D. Lukin, and L. Jiang, Ultrafast and Fault-Tolerant

Quantum Communication across Long Distances, Phys. Rev. Lett. 112, 250501 (2014).

Transmission probability

P tot
s = P tot

s,i + P tot
s,x + P tot

s,y + P tot
s,z = (Ps,i + Ps,x + Ps,y + Ps,z)L/L0

Effective rate of X/Z errors

QX/Z =
1

2

[
1− (Ps,i ∓ Ps,x ± Ps,z − Ps,y )L/L0

(Ps,i + Ps,x + Ps,y + Ps,z)L/L0

]

Asymptotic key generation rate in QKD

R = max [P tot
s {1− 2h(Q)} /t0]

where h(Q) = −Q log2(Q)− (1− Q) log2(1− Q), Q = (QX + QZ ) /2, and
t0 is the time taken in one repeater station.
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Coherent-state qubit

Coherent-state qubit: {|α〉 , |−α〉}

Bell-state measurement of coherent-state qubits
Use a beam splitter (BS) & two photon number parity
detectors (PNPDs).

|α〉 |α〉 ± |−α〉 |−α〉 BS−→
(∣∣∣√2α

〉
±
∣∣∣−√2α

〉)
|0〉

|α〉 |−α〉 ± |−α〉 |α〉 BS−→ |0〉
(∣∣∣√2α

〉
±
∣∣∣−√2α

〉) Figure: from S.-W. Lee & H.
Jeong, arXiv:1304.1214 (2013)

Interpreting the BSM result

(even, 0) : |φ+〉 (0, even) : |ψ+〉

(odd, 0) : |φ−〉 (0, odd) : |ψ−〉
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Coherent-state qubit (cont.)

Properties of coherent-state qubit

Less failure probability of Bell-state
measurement than the case of
polarization qubit of same photon
number. Average failure probability
pfail is:

pfail =
e−2|α|2

1 + e−4|α|2

By photon loss, it does not jump into the orthogonal space, but loses
coherence (dephasing).

|α〉〈α| → |√ηα〉〈√ηα|

|α〉 〈−α| → e−2(1−η)|α|2 |√ηα〉 〈−√ηα|
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BSM of coherent-state qubits in lossy environment

Photon loss model

Considering photon-loss model by
the Master equation under the Born-Markov approximation with the
zero-temperature,

∂ρ

∂τ
= γ

N∑
i=1

(
âiρâ

†
i −

1

2
â†i âiρ−

1

2
ρâ†i âi

)
or equivalently beam splitter model where the system is mixed with vacuum
state by beam splitter, (η = e−γτ/2)(

â

b̂

)
→
(
â′

b̂′

)
=

( √
η −

√
1− η√

1− η √
η

)(
â

b̂

)
.

Basis states of coherent-state qubit and their cross term transform as:

|α〉〈α| → |√ηα〉〈√ηα| , |α〉 〈−α| → e−2(1−√η2)|α|2 |√ηα〉 〈−√ηα| ,

where η is the survival rate of photons.

Ref) S. M. Barnett & P. M. Radmore, Methods in Theoretical Quantum Optics, Clarendon Press (1997).
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BSM of coherent-state qubits in lossy environment (cont.)

Modified Bell-state measurement scheme
Let

{Πx : x ∈ {0, 1, 2}}: orthogonal projectors

s.t.

Π0 := |0F〉〈0F|
Π1 :=

∑
n:odd |nF〉〈nF|

Π2 :=
∑

n 6=0:even |nF〉〈nF|
(|nF〉: a Fock state with n photon
numbers)

Πx,y := Πx ⊗ Πy where x , y ∈ {0, 1, 2}

Λη : Photon loss channel with survival rate
η

Λη1,η2 := Λη1 ⊗ Λη2

UBS: Unitary channel corresponding to a
beam splitter

POVM elements of Bell-state measurement in lossy environment
Positive-operator valued measure (POVM) elements {Mx,y}x,y where x , y ∈ {0, 1, 2} are defined
as

Mx,y := (UBS ◦ Λη1,η2 )† (Πx,y ) ,

Then
Pr (x , y | ρ) = Tr [Πx,y (UBS ◦ Λη1,η2 ) (ρ)] = Tr (Mx,yρ)
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BSM of coherent-state qubits in lossy environment (cont.)

Modified Bell-state measurement scheme (cont.)
Assuming preceding photon loss model, matrix elements of each POVM element
Mx,y is calculated as:

〈φ±|Mx,y |φ±〉 = c±
[
1± (−1)x+ye−2(2−η1−η2)|α|2

]
fx (η+) fy (η−)

〈ψ±|Mx,y |ψ±〉 = c±
[
1± (−1)x+ye−2(2−η1−η2)|α|2

]
fx (η−) fy (η+)

〈φ±|Mx,y |ψ±〉 = c±
[
±(−1)x+ye−2(1−η1)|α|2 + e−2(1−η2)|α|2

]
× fx

(√
η+η−

)
fy
(√
η+η−

)
〈φ+|Mx,y |ψ−〉 = 〈ψ+|Mx,y |ψ−〉 = 〈φ±|Mx,y |ψ∓〉 = 0

where

c± :=
1

1± e−4|α|2 , fi (η) :=


1 if i = 0

sinh
(
η|α|2

)
if i = 1

cosh
(
η|α|2

)
− 1 if i = 2

, η± :=

(√
η1 ±

√
η2

)2

2
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BSM of coherent-state qubits in lossy environment (cont.)

Modified Bell-state measurement scheme (cont.)
From the measurement result (x , y), assuming equal prior probability of each Bell
state, choose a Bell state |B〉 ∈ B = {|φ+〉 , |φ−〉 , |ψ+〉 , |ψ−〉} which maximize

Pr (B | x , y) =
Pr (x , y |B) Pr (B)∑

|B′〉∈B Pr (x , y |B) Pr (B)
∝ Pr (x , y |B) = 〈B|Mx,y |B〉

⇒ |B〉 = argmax|B′〉∈B 〈B ′|Mx,y |B ′〉

By simple analysis, one can show the following result.
(MB

x,y := 〈B|Mx,y |B〉 for simplicity.)

{
M
φ+(ψ+)
x,y > M

φ−(ψ−)
x,y if x + y : even

M
φ+(ψ+)
x,y < M

φ−(ψ−)
x,y if x + y : odd

M
φ±
x,y > M

ψ±
x,y if x > y

M
φ±
x,y < M

ψ±
x,y if x < y

M
φ±
x,y = M

ψ±
x,y if x = y

x \ y 0 1 2

0 φ+/ψ+ ψ− ψ+

1 φ− φ+/ψ+ ψ−

2 φ+ φ− φ+/ψ+

Table: Interpreting measurement results.
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BSM of coherent-state qubits in lossy environment (cont.)

Success, failure, and error probs. of BSM

Assume equal prior probs. for four
Bell states.

Possible errors

X error: Symbol flip (φ↔ ψ)
Z error: Sign flip (+↔ −)
Y error: Both symbol and sign flip
SND (or failure): Symbol is not
determinable. (x = y)

Set η1 := η0, η2 := η0e
−L0/Latt

L0 = 1 km and Latt = 22 km
Both systems suffer internal loss
with survival rate of η0.
Photons of second system travel
distance of L0.

SND and Z error are much more
probable then X and Y errors

pX , pY / 10−4.
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Set η1 := η0, η2 := η0e
−L0/Latt

L0 = 1 km and Latt = 22 km
Both systems suffer internal loss
with survival rate of η0.
Photons of second system travel
distance of L0.

SND and Z error are much more
probable then X and Y errors

pX , pY / 10−4.
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Parity encoding using coherent-state qubits

Modified parity encoding for coherent-state qubits

|0L(1L)〉 :=
[
N(m)

{
(|α〉+ |−α〉)⊗m ± (|α〉 − |−α〉)⊗m

}]⊗n

Basis of each level

Logical level
|0L〉, |1L〉 → |Φ±〉, |Ψ±〉
Block level∣∣±(m)

〉
:= N(m)

{
(|α〉+ |−α〉)⊗m ± (|α〉 − |−α〉)⊗m

}
→
∣∣∣φ(m)
±

〉
,
∣∣∣ψ(m)
±

〉
Physical level
|±α〉 → |φ±〉, |ψ±〉
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Parity encoding using coherent-state qubits (cont.)

Decomposition of Bell states
Logical level → Block level∣∣Φ+(−)

〉
= N

(n)
2

∑
j=even(odd)≤n

(
C

(m)
−

)j (
C

(m)
+

)n−j

P
[∣∣∣φ(m)
−

〉⊗j ∣∣∣φ(m)
+

〉⊗n−j
]

∣∣Ψ+(−)

〉
= N

(n)
2

∑
j=even(odd)≤n

(
C

(m)
−

)j (
C

(m)
+

)n−j

P
[∣∣∣ψ(m)
−

〉⊗j ∣∣∣ψ(m)
+

〉⊗n−j
]

where

C
(m)
± =

√
2

1±


(

1 + e−2|α|2
)m
−
(

1− e−2|α|2
)m

(
1 + e−2|α|2

)m
+
(
1− e−2|α|2

)m


2


1/2

Block level → Physical level∣∣∣φ(m)
±

〉
= N

(m)
1±

∑
k=even≤m

P
[
|ψ±〉⊗k |φ±〉⊗m−k

]
∣∣∣ψ(m)
±

〉
= N

(m)
1±

∑
k=odd≤m

P
[
|ψ±〉⊗k |φ±〉⊗m−k

]
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Näıve Bell-state measurement scheme

Logical level (BSM2)∣∣Φ+(−)

〉
= N

(n)
2

∑
j=even(odd)≤n

(
C

(m)
−

)j (
C

(m)
+

)n−j

P
[∣∣∣φ(m)
−

〉⊗j ∣∣∣φ(m)
+

〉⊗n−j
]

∣∣Ψ+(−)

〉
= N

(n)
2

∑
j=even(odd)≤n

(
C

(m)
−

)j (
C

(m)
+

)n−j

P
[∣∣∣ψ(m)
−

〉⊗j ∣∣∣ψ(m)
+

〉⊗n−j
]

Symbol: by majority vote of symbols of block Bell states

Sign: by parity of the number of block Bell states with minus sign

Block level (BSM1)∣∣∣φ(m)
±

〉
= N

(m)
1±

∑
k=even≤m

P
[
|ψ±〉⊗k |φ±〉⊗m−k

]
∣∣∣ψ(m)
±

〉
= N

(m)
1±

∑
k=odd≤m

P
[
|ψ±〉⊗k |φ±〉⊗m−k

]

Symbol: by parity of the number of physical Bell states with ψ symbol

Sign: by majority vote of signs of physical Bell states
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Näıve Bell-state measurement scheme
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= N

(n)
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∑
j=even(odd)≤n

(
C

(m)
−

)j (
C

(m)
+

)n−j

P
[∣∣∣φ(m)
−

〉⊗j ∣∣∣φ(m)
+

〉⊗n−j
]

∣∣Ψ+(−)

〉
= N

(n)
2

∑
j=even(odd)≤n

(
C

(m)
−

)j (
C

(m)
+

)n−j

P
[∣∣∣ψ(m)
−

〉⊗j ∣∣∣ψ(m)
+

〉⊗n−j
]

Symbol: by majority vote of symbols of block Bell states

Sign: by parity of the number of block Bell states with minus sign

Block level (BSM1)∣∣∣φ(m)
±

〉
= N

(m)
1±

∑
k=even≤m

P
[
|ψ±〉⊗k |φ±〉⊗m−k

]
∣∣∣ψ(m)
±

〉
= N

(m)
1±

∑
k=odd≤m

P
[
|ψ±〉⊗k |φ±〉⊗m−k

]

Symbol: by parity of the number of physical Bell states with ψ symbol

Sign: by majority vote of signs of physical Bell states
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Näıve Bell-state measurement scheme (cont.)

Physical level (BSM0)

Sign: Always determinable.

Symbol: Not determinable if x = y .

x \ y 0 1 2

0 φ+/ψ+ ψ− ψ+

1 φ− φ+/ψ+ ψ−

2 φ+ φ− φ+/ψ+

Overall

Sign of a Bell state of each level: Always determinable, if m is an odd number.

Block level (BSM1): Majority vote of signs of BSM0 always gives result, if m is
an odd number.
Logical level (BSM2): The number of BSM1 giving minus sign is well-defined.

Symbol of a Bell state of each level: Not always determinable. If symbol is not
determinable, it is called ’SND’ for physical/block level, and ’failure’ for logical
level.

Block level (BSM1): If at least one BSM0 is SND, we cannot determine the
parity of the number of BSM0 giving ψ symbol, so the BSM1 is also SND.
Logical level (BSM2): We can perform majority vote of symbols of BSM1

excluding SND BSM1. If all BSM1s are SND, or majority vote fails, the BSM2

is SND.
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Bell-state measurement scheme with optimized cost

Cost of concatenated BSM: Number of physical BSMs for one logical BSM.

Näıve Bell-state measurement scheme have cost nm. How to optimize the
cost?
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Bell-state measurement scheme with optimized cost (cont.)

Logical level (BSM2)

Scheme

Perform BSM1s until we have j BSM1s which is not SND.
After that, perform BSM1,signs for left block states, which determine only sign
of a block Bell-state.

Interpreting the results

Symbol: by majority vote among j not-SND BSM1s.
Sign: by parity of the number of block Bell states with minus sign determined
by BSM1s and BSM1,signs.

Since we expect X error (symbol flip error) is much less likely than Z error
(sign flip error), majority vote among only j not-SND BSM1s would be
enough.
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Bell-state measurement scheme with optimized cost (cont.)
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Bell-state measurement scheme with optimized cost (cont.)

Block level (BSM1)

d : Index of BSM0

→ Enough to determine the sign of block Bell state.

Sign: Determined by signs of the
first d BSM0s for all cases.

Symbol:

Case 1: Determined by the parity
of the number of states with
symbol ψ.
Case 2 and 3: SND, since the
existence of SND BSM0 makes
the parity of the number of ψ
states ambiguous.
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Bell-state measurement scheme with optimized cost (cont.)
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Bell-state measurement scheme with optimized cost (cont.)
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Bell-state measurement scheme with optimized cost (cont.)

Block level (BSM1)
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Bell-state measurement scheme with optimized cost (cont.)

Block level measuring only sign (BSM1,sign)

Sign: Determined by signs of the first d
BSM0s.

Symbol: No need to be determined

Physical level (BSM0)

Currently, BSM0 and BSM0,symbol are same.
BSM0,sign

Only need to determine the parity of x + y.
Need one PNPD instead of two.
Assume half amount of contribution to cost than full BSM0.
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Bell-state measurement scheme with optimized cost (cont.)
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Probabilities of specific measurement results

Probabilities of single block Bell-state measurement results

Want: Pr (x, y |B1), where x, y ∈ {0, 1, 2, 3}m and |B1〉 ∈ B1 :=
{∣∣∣φ(m)
±

〉
,
∣∣∣ψ(m)
±

〉}
Remind:

Pr (x, y |B0) = 〈B0|Mx,y |B0〉 for B0 ∈ B0 = {|φ±〉 , |ψ±〉}∣∣∣φ(m)
±

〉
= N

(m)
1±

∑
k=even≤m

P
[
|ψ±〉⊗k |φ±〉⊗m−k

]
∣∣∣ψ(m)
±

〉
= N

(m)
1±

∑
k=odd≤m

P
[
|ψ±〉⊗k |φ±〉⊗m−k

]

For B1 =
∣∣∣φ(m)
±

〉
,

Pr
(

x, y
∣∣∣φ(m)
±

)
=
〈
φ

(m)
±

∣∣∣ m⊗
i=1

Mxi ,yi

∣∣∣φ(m)
±

〉

=
(
N

(m)
1±

)2 ∑
k,k′=even≤m

∑
⊗m

i=1|Pi 〉∈Perm
[
|ψ±〉⊗k |φ±〉⊗m−k

]
⊗m

i=1|P′i 〉∈Perm

[
|ψ±〉⊗k′ |φ±〉⊗m−k′

]

m∏
i=1

〈Pi |Mxi ,yi

∣∣P′i 〉

:=
(
N

(m)
1±

)2 ∑
k,k′=even≤m

g±(m, k, k′, x, y)
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Probabilities of specific measurement results (cont.)

Probabilities of single block Bell-state measurement results (cont.)
Recurrence relation of function g (omit x and y)

g±(m, k, k ′) = g±(m − 1, k, k ′)M
(m)±
11 +

[
g±(m − 1, k, k ′ − 1)

+g±(m − 1, k − 1, k ′)
]
M

(m)±
12 + g±(m − 1, k − 1, k ′ − 1)M

(m)±
22

where

M
(i)±
11 := 〈φ±| M̂xi ,yi |φ±〉 , M

(i)±
12 := 〈φ±| M̂xi ,yi |ψ±〉 , M

(i)±
22 := 〈ψ±| M̂xi ,yi |ψ±〉 .

Define H±m

H±m :=


∑

k,k′:even≤m g±(m, k, k ′)
∑

k:even≤m
k′:odd≤m

g±(m, k, k ′)∑
k:odd≤m
k′:even≤m

g±(m, k, k ′)
∑

k,k′:odd≤m g±(m, k, k ′).


Recurrence relation of H̃

±
m :=

(
H±m,11,H

±
m,12,H

±
m,21,H

±
m,22

)

H̃
±
m =


M

(m)±
11 M

(m)±
12 M

(m)±
12 M

(m)±
22

M
(m)±
12 M

(m)±
11 M

(m)±
22 M

(m)±
12

M
(m)±
12 M

(m)±
22 M

(m)±
11 M

(m)±
12

M
(m)±
22 M

(m)±
12 M

(m)±
12 M

(m)±
11

 H̃
±
m−1 := M̃

±
m H̃
±
m−1

−→ M̃
±
m · · · M̃

±
1 (1, 0, 0, 0)T

Seokhyung Lee and Hyunseok Jeong (SQuiS) Concatenated BSM with Coherent States June 1, 2020 27 / 40



Probabilities of specific measurement results (cont.)

Simple matrix-form expression of Pr (x, y |B1)

Pr
(

x, y
∣∣∣φ(m)
±

)
=
(
N

(m)
1±

)2
H̃±m1(x, y),

Pr
(

x, y
∣∣∣ψ(m)
±

)
=
(
N

(m)
1±

)2
H̃±m4(x, y),

where
H̃
±
m (x, y) = M̃

±
m (x, y) · · · M̃1(x, y)(1, 0, 0, 0)T

with

M̃
±
i (x, y) =


M

(i)±
11 M

(i)±
12 M

(i)±
12 M

(i)±
22

M
(i)±
12 M

(i)±
11 M

(i)±
22 M

(i)±
12

M
(i)±
12 M

(i)±
22 M

(i)±
11 M

(i)±
12

M
(i)±
22 M

(i)±
12 M

(i)±
12 M

(i)±
11


and

M
(i)±
11 := 〈φ±| M̂xi ,yi |φ±〉 , M

(i)±
12 := 〈φ±| M̂xi ,yi |ψ±〉 , M

(i)±
22 := 〈ψ±| M̂xi ,yi |ψ±〉 .
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Probabilities of specific measurement results (cont.)

Probabilities of logical Bell-state measurement results (cont.)

Want: Pr (X,Y |B2), where X,Y ∈ {0, 1, 2, 3}n×m and
|B2〉 ∈ B2 := {|Φ±〉 , |Ψ±〉}

Simple matrix-form expression of Pr (X,Y |B2)

Pr (X,Y |Φ+) =
(
N

(n)
2

)2
H̃n1(X,Y),

Pr (X,Y |Φ−) =
(
N

(n)
2

)2
H̃n2(X,Y),

where

H̃n(X,Y) = M̃n(X,Y) · · · M̃1(X,Y)

(
1
0

)
, with M̃i (X,Y) =

(
M

(i)
11 M

(i)
22

M
(i)
22 M

(i)
11

)
,

and

M
(i)
11 :=

(
C

(m)
+

)2 〈
φ

(m)
+

∣∣∣ M̂(i)
B

∣∣∣φ(m)
+

〉
, M

(i)
22 :=

(
C

(m)
−

)2 〈
φ

(m)
−

∣∣∣ M̂(i)
B

∣∣∣φ(m)
−

〉
, and M̂

(i)
B =

m⊗
j=1

M̂Xij ,Yij

Seokhyung Lee and Hyunseok Jeong (SQuiS) Concatenated BSM with Coherent States June 1, 2020 29 / 40



Table of Contents

1 Backgrounds
Concatenated Bell-state measurement
Quantum repeater
Coherent-state qubits

2 Theoretical results
Bell-state measurement of coherent-state qubits in lossy environment
Parity encoding using coherent-state qubits
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Methods for Monte-Carlo simulation

Parameters: n, m, α, η1, η2, j

We tried Monte-Carlo simulation, which randomly samples results and counts
the number of success or error.

Randomly sampling measurement results

Assume a prior distribution for four logical Bell states B2 = {Φ±,Ψ±}.
Need to sample nm BSM0 measurement results, each of which gives (x , y)
where x , y ∈ {0, 1, 2} −→ x11, y11, · · · , xnm, ynm
Sample each BSM0 measurement result one by one with conditional
probability where B2 ∈ B2:

Pr (xpq, ypq | x11, y11, · · · , xp,q−1, yp,q−1;B2) ∝ Pr (x11, y11, · · · , xp,q, yp,q |B2)

The conditional probability can be expressed with H̃ we used for matrix-form
expression of Pr (X,Y |B2) and Pr (x, y |B1).
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Simulation results

Success probability of single logical CBSM against cost

η1 = η2 = η. Optimization of α is taken in range of α ≤ 2
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Simulation results (cont.)

Success probability of single logical CBSM against α

α = 1.2 (left), α = 1.8 (right).

η1 = η2 = η = 0.99.

α should be large enough to make efficient CBSM possible.
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Simulation results (cont.)

Key generation rate R for quantum key distribution

Effective total cost optimizing for α, L0, and j , when L = 1000 km.

Rt0 optimizing for α and j , when L0 = 0.8 km and L = 1000 km.

Effective total cost Ctot = CBSM

(
L
L0

)
/(Rt0)

Optimal at n = 3, m = 33, α = 1.95, L0 = 0.75km, j = 1.
Ctot = (1.00± 0.01)× 105.
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Näıve Bell-state measurement scheme
Bell-state measurement scheme with optimized cost
Probabilities of specific measurement results

3 Numerical calculation
Methods for Monte-Carlo simulation
Simulation results

4 Implementation of the scheme

5 Conclusion

Seokhyung Lee and Hyunseok Jeong (SQuiS) Concatenated BSM with Coherent States June 1, 2020 35 / 40



Implementation of the scheme

Preparation of |0L〉 and |1L〉
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Implementation of the scheme

CNOT gate
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Conclusion

We investigated Bell-state measurement scheme with coherent-state qubits in
lossy environment.

We suggested parity encoding scheme using coherent-state qubits and
concatenated Bell-state measurement (CBSM) scheme with optimized cost.

We got analytic expressions of probabilities for getting each specific
measurement results, and then performed Monte-Carlo simulations for
success probabilities and error rates.

Numerical calculation shows that CBSM with coherent-state can achieve high
success probability and high key generation rate Rt0 ≈ 0.8. For that to be
possible, α should be large enough (α ' 1.2) and m ' 35, while n does not
affect the performance much.

However, suggested CBSM protocol with coherent state is not yet good
enough compared to CBSM with polarization qubit in S.-W. Lee et al.
(2019).

Future works will include developing BSM0,symbol , simulating for j ≥ 2,
simulating for larger m, and methods to physically realize this CBSM scheme.
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Thank you for your attention!
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